
CHAPTER 2

OPERATING SYSTEM STRUCTURES

Contents of chapter 2

 Components / Functions of Operating System

 Services of Operating System

 System Structure

 Operating System Structure/Architecture

 System Calls

 System Programs

System Calls
 System calls provide the interface between a process

and the Operating System.

 These calls are generally available as assembly

language instructions, and they are usually listed in

the various manuals used by the assembly language

programmers.

 Systems calls can be grouped roughly into five major

categories : process control, file management, device

management, information maintenance, and

communications.

1. Process Control :

 A process or job executing one program my want to load on and
execute another program. Create/ Terminate, Load/execute

Wait/Signal, Allocate/ free memory, Wait for time

 Create : system call is used when we create a new job or process.

 Terminate : A running program needs to be able to halt its execution
either normally(end) or abnormally(abort).

 Load/execute

 Wait/Signal :We may want to wait for a specific event to occur (wait
event)

 Allocate/ free memory

 Wait for time : We may want to wait for a certain time (wait time)
for a process to finish its execution.

2. File Management :

 Create/delete; open/close; read/write/seek; attributes.

 We first need to be able to create or delete files.

 We may also read, write or reposition (rewind or skip to the
end of the file).

 Finally, we need to close the file.

 For either files or directories, we need to be able to
determine the values of various attributes, and to reset them
if necessary.

 File attributes include the file name, a file type, protection
codes, accounting information and so on.

 At least two system calls, get file attribute and set file
attribute are required for this function.

3. Device Management :

 Request/release device; read/write/seek, attributes.

 If a system has multiple users, we must first request the

device to ensure exclusive use of it.

 After we are finished with the device, we must release

it.

 Once the device has been requested (and allocated to

us) we can read, write and reposition the device.

 get device attributes, set device attributes

 Logically attach or detach devices

4. Information Maintenance :

 Get time or date, set time/date

 Get system data, set system data

 Get process, file or device attributes

 Set process, file or device attributes

5. Communications :

 Create, delete communication connection.

 Send, receive messages.

 Transfer status information.

 Attach or detach remote devices.

System Programs

 Aspect of modern system is the collection of system programs.

 The logical computer hierarchy shows that, at the lowest level is the

hardware.

 Next are the operating system, then the system programs, and finally

the application programs.

 System programs provide a convenient environment for
program development and execution.

 Some of them are simply user interfaces to system calls; others
are considerably more complex.

 They can be divided into these categories:

1. File Management : These programs create, delete, copy,
rename, print, dump list and generally manipulate files and
directories.

2. Status Information : Some programs simply ask the system for
the date, time, amount of available memory or disk space,
number of users, or similar status information.

That information is then formatted, and is printed to the
terminal or other output device or file.

3. File Modification : Several text editors may be available to create
and modify content of files stored on disk or tape.

4. Programming-language support: compilers, assemblers and
interpreters for common programming languages (such as C, C++,
JAVA, VISUAL BASIC and PERL) are often provided to the user
with the OS.

Some of these programs are now priced and provided separately.

5. Program loading and execution : Once a program is assembled or
compiled, it must be loaded into memory to be executed.

The system may provide absolute loader, relocatable loaders,
linkage editors, and overlay loaders.

Debugging systems for either higher-level language or machine-
level language are also needed.

6. Communications : These programs provide the mechanism
for creating virtual connections among processes, users and
different computer systems. They allow users to send
messages to another’s screen to browse web pages, to send
electronic mail message, to log in remotely, or to transfer
files from one machine to another.

7. System utilities or application programs : Most OS are
supplied with programs that solve common problems, or
perform common operations such programs include web
browsers, word processors and text formatters,
spreadsheets, DB systems, plotting & statistics-analysis
package and games. These programs are known as System
Utilities.

System Structure

 An operating system contains a kernel, command processor or shell
and Graphical User Interface (GUI).

Kernel

 It is the control module of an operating system.

 It is that part of the OS that loads first and remains in the main
memory.

 It is a bridge between applications and the actual data processing
done at the hardware level.

 It is responsible for memory management, process and task
management, and disk management. Thus, kernel’s primary
function is to manage the computer’s resources and allow other
programs to run and use these resources.

 Kernel provides the lowest level abstraction layer for various
resources like processes and I/O devices that application software
must control to perform it function.

 When a user gives command for performing any

operation, then the request goes to the shell. The shell

translates these human programs into machine language

and then transfers the request to the kernel.

 The kernel receives the request from shell, processes it and

displays the result on the screen.

 All these functions are performed by kernel in a

transparent manner.

Shell

 A shell is a software that provides an interface for users

of an operating system which provides access to the

services of a kernel.

 The name shell originated from shells being an outer layer

of interface between the user and the internals of the

operating system (the kernel).

 OS shells are divided into two categories: command line

and graphical.

 Command line shell is used in MS-DOS and graphical

shells are used in windows that provides GUI facilities.

Command Processor

 It is that part of an operating system which receives and

executes operating system commands.

 Whenever a command prompt is displayed the command

processor waits for a command.

 After the user enters a command, the command processor

makes sure that command is valid and then executes it or

issues an error message.

 For an OS with graphical user interface, the command

processor interprets mouse operations and executes the

appropriate command. It is also known as command line

interpreter.

Graphical User Interface

 It is provided so that the user need not remember

tedious syntax of the command language, instead

pointing to an option by means of a mouse can do

his/her job.

BASICS OF OPERATING SYSTEM ARCHITECTURE

 An operating system architecture is usually organized into two part or modes,
kernel or supervisor mode and user mode.

 This segregation is done in order to provide certain privileges to operating
system that are not given to application programs.

 Kernel mode executes the operating system processes and user mode
executes application programs of users.

 In other words, if the instruction is from the application program, the machine
is said to be in the user mode. If it is executing any operating system
instruction, the machine is said to be in the kernel mode.

 At any time, a single bit in PSW (Program Status Word) indicates whether
instruction is user mode or kernel mode instruction as CPU can execute only
one instruction at a time.

 A system can enter kernel mode from user mode by using any of these
following methods:

1. System Call

2. Traps

3. Interrupts

Computer System Operation

 For a computer to start running – for instance, when it is
powered up or rebooted – it needs to have an initial
program to run. This initial program, or bootstrap program,
tends to be simple.

 Typically, it is stored in read-only memory (ROM) such as
firmware or EEPROM within the computer hardware. It
initializes all aspects of the system, from CPU registers to
device controllers to memory contents.

 The bootstrap program must know how to load the OS and to
start executing that system.

 To accomplish this goal, the bootstrap must locate and load
into memory the operating system kernel.

 The OS then starts executing the first process, such as “init”,
and waits for some event to occur.

What is Kernel?

 A kernel is an important part of an OS that manages

system resources.

 It also acts as a bridge between the software and

hardware of the computer.

 It is one of the first program which is loaded on start-up

after the bootloader.

 The Kernel is also responsible for offering secure access

to the machine's hardware for various programs.

 It also decides when and how long a certain application

uses specific hardware.

Interrupt

 The occurrence of an event is usually signaled by an
interrupt from hardware or the software.

 Hardware may trigger an interrupt at any time by sending
a signal to the CPU, usually by way of the system bus.

 Software may trigger an interrupt by executing a special
operation called a system call(also called a monitor call).

 Modern Operating Systems are interrupt driven.

 If there are no processes to execute, no I/O devices to
service, and no users to whom to respond, an OS will sit
quietly, waiting for something to happen.

 Events are almost always signaled by the occurrence of an
interrupt or a trap.

Trap

 A trap (or an exception) is a software-generated interrupt caused either
by an error (for example, division by zero or invalid memory access) or by
a specific request from a user program that an operating-system service be
performed.

 The interrupt-driven nature of an OS defines that system’s general structure.

 For each type of interrupt, separate segments of code in the OS determine
what action should be taken.

 An interrupt service routine is provided that is responsible for dealing with
the interrupt.

 When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location.

 The fixed location usually contains the starting address where the service
routine for the interrupt is located.

 The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation.

ARCHITECTURE OF AN OPERATING SYSTEM

 The fundamental structure of an operating system that

defines the interconnection between the system

components.

 An operating system can have different architectures:

1. Monolithic

2. Microkernel Architecture

3. Layered Architecture

4. Client server architecture

5. Virtual Machine architecture

Monolithic Architecture

 A large kernel containing virtually the complete OS.

 A monolithic kernel is an operating system architecture where the entire operating
system is working in kernel space. This increases the size of the kernel as well as the
operating system.

 Advantages of Monolithic Kernel

 Some of the advantages of monolithic kernel are −

 The execution of the monolithic kernel is quite fast as the services such as memory
management, file management, process scheduling etc., are implemented under the
same address space.

 A process runs completely in a single address space in the monolithic kernel.

 The monolithic kernel is a static single binary file.

 Disadvantages of Monolithic Kernel

 Some of the disadvantages of monolithic kernel are −

 If any service fails in the monolithic kernel, it leads to the failure of the entire
system.

 To add any new service, the entire operating system needs to be modified by the
user.

https://en.wikipedia.org/wiki/Kernel_space

Microkernel Architecture

❑The microkernel contains basic requirements such as memory,

process scheduling mechanisms and basic inter process

communication.

❑The only software executing at the privileged level i.e. kernel mode

is the microkernel.

❑The other functions of the operating system are removed from the

kernel mode and run in the user mode. These functions may be device

drivers, file servers, application interprocess communication etc.

❑The microkernel makes sure that the code can be easily managed

because the services are divided in the user space.

❑ This means that there is less code running in the kernel mode

which results in increased security and stability.

Microkernel Architecture Diagram

Benefits of Microkernels

 Some of the benefits of microkernels are −

 Microkernels are modular and the different modules can be replaced,
reloaded, modified, changed etc. as required. This can be done without
even touching the kernel.

 All new services are added to user space and consequently do not
require modification of the kernel.

 When the kernel does have to be modified, the changes tend to be
fewer, because the microkernel is a smaller kernel.

 The resulting OS is easier to port from one hardware to another.

 Microkernels contain fewer system crashes as compared to monolithic
systems. Also, the crashes that do occur can be handled quite easily due
to the modular structure of microkernels.

 Microkernel also provides more security and reliability, since most
services are running as user rather than kernel processes.

 If the service fails rest of the OS remains untouched.

Disadvantages of Microkernel architecture

 Providing services in a microkernel system are

expensive compared to the normal

monolithic system.

Differences Between Microkernel and Monolithic Kernel

Summary:

 A kernel is an important part of an OS that manages system resources.

 A microkernel is a software or code which contains the required minimum
amount of functions, data, and features to implement an operating system.

 In Monolithic Kernel approach, the entire operating system runs as a single
program in kernel mode

 A Microkernel is the most important part for correct implementation of an
operating system.

 A microkernel comprises only the core functionalities of the system.

 A monolithic kernel is a large process running in a single address space,
whereas Microkernel can be broken down into separate processes called
servers.

 Microkernel architecture is small and isolated therefore it can function better

 Providing services in a microkernel system are expensive compared to the
normal monolithic system

Layered Architecture

 Layering provides a distinct advantage in an operating

system. All the layers can be defined separately and

interact with each other as required. Also, it is easier to

create, maintain and update the system if it is done in

the form of layers. Change in one layer specification

does not affect the rest of the layers.

 Each of the layers in the operating system can only

interact with the layers that are above and below it.

The lowest layer handles the hardware and the

uppermost layer deals with the user applications.

Layered OS Representation

Layered System

CPU SCHEDULING

MEMORY MANAGEMENT

HARDWARE

COMMUNICATION

USER PROGRAMS

USER

LAYERS

0

1

2

3

4

5

Six layers of Layered System

Layer 1 : Hardware

 This layer interacts with the system hardware and coordinates with all the
peripheral devices used such as printer, mouse, keyboard, scanner etc. The
hardware layer is the lowest layer in the layered operating system
architecture.

Layer 2 : CPU Scheduling

 This layer deals with scheduling the processes for the CPU. There are many
scheduling queues that are used to handle processes. When the processes
enter the system, they are put into the job queue. The processes that are
ready to execute in the main memory are kept in the ready queue.

Layer 3 : Memory Management

 Memory management deals with memory and the moving of processes from
disk to primary memory for execution and back again. This is handled by the
third layer of the operating system.

Layer 4 : Process Management

 This layer is responsible for managing the processes i.e assigning the
processor to a process at a time. This is known as process scheduling.
The different algorithms used for process scheduling are FCFS (first
come first served), SJF (shortest job first), priority scheduling, round-
robin scheduling etc.

Layer 5 : I/O Buffer

 I/O devices are very important in the computer systems. They
provide users with the means of interacting with the system. This
layer handles the buffers for the I/O devices and makes sure that
they work correctly.

Layer 6 : User Programs

 This is the highest layer in the layered operating system. This layer
deals with the many user programs and applications that run in an
operating system such as word processors, games, browsers etc.

ADVANTAGES AND DISADVANTAGES LAYERED ARCHITECTURE

ADVANTAGES

 Layered architecture also helps you to test the

components independently of each other.

DISADVANTAGES

❑ There might be a negative impact on the performance as

we have the extra overhead of passing through layers

instead of calling a component directly.

Client-Server Architecture

 Client-server architecture, architecture of a computer

network in which many clients (remote processors)

request and receive service from a

centralized server (host computer).

 Client computers provide an interface to allow a

computer user to request services of the server and to

display the results the server returns.

 Examples of computer applications that use the client-

server model are email, network printing, and the

World Wide Web.

Advantages of Client-Server Architecture

 Centralization of control: access, resources and integrity of the data are
controlled by the dedicated server so that a program or unauthorized client
cannot damage the system. This centralization also facilitates task of
updating data or other resources (better than the networks P2P).

 Scalability: You can increase the capacity of clients and servers separately.
Any element can be increased (or enhanced) at any time, or you can add new
nodes to the network (clients or servers).

 Easy maintenance: distribute the roles and responsibilities to several
standalone computers, you can replace, repair, upgrade, or even move a
server, while customers will not be affected by that change (or minimally
affect). This independence of the changes is also known as encapsulation.

 There are technologies sufficiently developed, designed for the paradigm of
C / S to ensure security in transactions, interface friendliness, and ease of
use.

Disadvantages of Client-Server Architecture

 Traffic congestion has always been a problem in the

paradigm of C / S. When a large number of

simultaneous clients send requests to the same server

might cause many problems for this (to more customers,

more problems for the server).

 When a server is down, customer requests cannot be met.

Examples of Client-Server Architecture

 Examples of servers include web servers, mail servers,

and file servers. Each of these servers provide

resources to client devices, such as desktop computers,

laptops, tablets, and smartphones.

VIRTUAL MACHINES (VVVImp Q)

 The fundamental idea behind virtual machine is to abstract the
hardware of a single computer into several different execution
environment, thereby creating the illusion that each separate
execution environment is running its own private computer. By using
CPU scheduling and virtual memory techniques.

 The concept of a virtual machine is to provide an interface that
looks like independent hardware, to multiple different Operating
Systems running simultaneously on the same physical hardware.
Each OS believes that it has access to and control over its
own CPU, RAM, I/O devices, hard drives, etc.

 Each process is provided with a virtual copy of the underlying
computer.

 There are several reasons for creating a virtual machine, all of
which are fundamentally related to being able to share the same
hardware yet run several different execution environment
concurrently.

Virtual machine representation

Benefits

 There are two primary advantages:

 First, by completely protecting system resources, the

virtual machine provides a robust level of security.

 Second, the virtual machine allows system development

to be done without disrupting normal system operation.

 Each virtual machine is completely isolated from all

other virtual machines, so we have no security problems

as the various system resources are completely

protected.

The Java Virtual Machine

 Java was designed from the beginning to be platform independent, by
running Java only on a Java Virtual Machine, JVM, of which different
implementations have been developed for numerous different underlying HW
platforms.

 Java source code is compiled into Java byte code in .class files. Java byte
code is binary instructions that will run on the JVM.

 The JVM implements memory management and garbage collection.

 Java byte code may be interpreted as it runs, or compiled to native system
binary code using just-in-time (JIT) compilation. Under this scheme, the first
time that a piece of Java byte code is encountered, it is compiled to the
appropriate native machine binary code by the Java interpreter. This native
binary code is then cached, so that the next time that piece of code is
encountered it can be used directly.

 Some hardware chips have been developed to run Java byte code directly,
which is an interesting application of a real machine being developed to
emulate the services of a virtual one!

Implementation

