

 Scheduling is a fundamental OS function.

 Scheduling refers to set of policies and

mechanisms built into the OS that governs

the order in which the work has to be done

by a computer system to complete the task.

 CPU Scheduling is the basis of

multiprogrammed OS. By switching the CPU

among processes, the OS can make the

computer more productive.

 A scheduler is an OS module that selects the
next job or process to be admitted into the
system.

 Thus, a scheduler selects one of the process
from among the processes in the memory
that are ready to execute and allocates CPU
to it.

 In a complex OS three types of schedulers
exist. These are :

1. Long-term scheduler

2. Medium term scheduler

3. Short-term scheduler

SCHEDULER

LONG-TERM

SCHEDULER

MEDIUM TERM

SCHEDULER

SHORT TERM

SCHEDULER

 The long term scheduler works with batch queue and selects
the next batch job to be executed. Thus it plans the CPU
scheduling for batch jobs.

 Processes, which are resource intensive and have a low
priority are called batch jobs. These jobs are executed in a
group or bunch. For example, a user request for printing a
bunch of files.

 Long term scheduler selects the processes or job from
secondary storage device e.g. a disk and loads them into the
memory for execution. It is also known as Job Scheduler

 The frequency of execution of a long term is usually low.

 The primary objective of the job scheduler is to provide a
balanced mix of jobs, such as I/O bound and processor
bound.

 It also controls the degree of multiprogramming.

 If the degree of multiprogramming is stable, then the
average rate of process creation must be equal to the
average departure rate of processes leaving the system.

 On some systems, the long-term scheduler may not be
available or minimal.

I/O BOUND PROCESS

 I/O bound processes are those that spend most

of their time in I/O than computing.

CPU BOUND PROCESS

 CPU bound processes are those that spend most

of their time in computations rather than

generating I/O requests.

 Medium-term scheduling is a part of swapping.

 It removes the processes from the memory. It
reduces the degree of multiprogramming.

 The medium-term scheduler is in-charge of handling
the swapped out-processes.

 A running process may become suspended because of
an I/O request or by a system call.

 Such a suspended processes cannot make any
progress towards completion. In this condition, to
remove the process from memory and make space for
other processes, the suspended process is moved to
the secondary storage. This process is
called swapping, and the process is said to be
swapped out or rolled out.

 Swapping may be necessary to improve the process
mix.

 It is also called as CPU scheduler.

 it selects from among the ready processes that are
residing in the main memory and allocates CPU to one of
them.

 It is the change of ready state to running state of the
process.

 As compared to long-term schedulers, a Short-term
scheduler has to work very often i.e., the frequency of
execution of Short-term schedulers is high.

 The Short-term scheduler must select a new process for
CPU frequently.

 A process may execute for only a few milliseconds before
waiting for an I/O request. Often, the short-term
scheduler executes atleast once every 100 milliseconds.
Because of the brief time between executions, the short-
term schedulers are fast.

 Short-term schedulers, also known as dispatchers, as they
make the decision of which process to execute next.

 Short-term schedulers are faster than long-term
schedulers.

 Almost all programs have some alternating cycle of CPU
number crunching and waiting for I/O of some kind. (Even a
simple fetch from memory takes a long time relative to CPU
speeds.)

 In a simple system running a single process, the time spent
waiting for I/O is wasted, and those CPU cycles are lost
forever.

 A scheduling system allows one process to use the CPU while
another is waiting for I/O, thereby making full use of
otherwise lost CPU cycles.

 The challenge is to make the overall system as "efficient" and
"fair" as possible, subject to varying and often dynamic
conditions, and where "efficient" and "fair" are somewhat
subjective terms, often subject to shifting priority policies.

CPU-I/O Burst Cycle

 Almost all processes alternate between two states in a
continuing cycle, as shown in Figure below :

 A CPU burst of performing calculations, and

 An I/O burst, waiting for data transfer in or out of the
system.

Whenever the CPU becomes idle, it is the job

of the CPU Scheduler (a.k.a. the short-term

scheduler) to select another process from the

ready queue to run next.

 The storage structure for the ready queue and

the algorithm used to select the next process

are not necessarily a FIFO queue. There are

several alternatives to choose from, as well as

numerous adjustable parameters for each

algorithm, which is the basic subject of this

entire chapter.

 Preemptive Scheduling

 CPU scheduling decisions take place under one of four
conditions:
 When a process switches from the running state to the waiting

state, such as for an I/O request or invocation of the wait()
system call.

 When a process switches from the running state to the ready
state, for example in response to an interrupt.

 When a process switches from the waiting state to the ready
state, say at completion of I/O or a return from wait().

 When a process terminates.

 For conditions 1 and 4 there is no choice - A new process
must be selected.

 For conditions 2 and 3 there is a choice - To either continue
running the current process, or select a different one.

 If scheduling takes place only under conditions 1 and 4, the
system is said to be non-preemptive, or cooperative.
Under these conditions, once a process starts running it
keeps running, until it either voluntarily blocks or until it
finishes. Otherwise the system is said to be preemptive.

 Under non-preemptive scheduling, once the CPU
has been allocated to a process, the process keeps
the CPU untill it releases the CPU either by
terminating or by switching to the waiting state.

 It is the only method that can be used on certain
hardware platforms, because it does not require
the special hardware platforms. For example:
timer needed for preemptive scheduling.

 Unfortunately, preemptive scheduling incurs a
cost.

 Consider the case of two processes sharing data.
One may be in the midst of updating the data,
when it is preempted and the second process is
run. The second process may try to read the data,
which are currently in an inconsistent state. New
mechanisms thus are needed to co-ordinate access
to shared data.

 Another component involved in the CPU scheduling is

the dispatcher.

 The dispatcher is the module that gives control of

the CPU to the process selected by the scheduler.

 This function involves:

 Switching to user Switching context.

 mode.

 Jumping to the proper location in the newly loaded

program.

 The dispatcher should be as fast as possible, given

that it is invoked during every process switch.

What is dispatch latency? (VVIMP 2marks)

 The dispatcher needs to be as fast as possible, as it is

run on every context switch. The time consumed by

the dispatcher is known as dispatch latency.

 In choosing, which algorithm to use in a particular
situation, we must consider the properties of the various
algorithms.

 Many criteria have been suggested for CPU Scheduling
algorithm.

 The characteristics used for comparision can make a
substantial difference in the determination of the best
algorithm.

 The criteria include the following:

1. CPU Utilization :

 This is the percentage of time that the CPU/Processor is
busy.

 CPU Utilization may range from 0 to 100%.

 In a real system, it should range from 40% (for a lightly
loaded system) to 90% (for a heavy loaded system).

 It is system oriented and performance related.

 2. Throughput :

 The scheduling policy should attempt to maximize the
number of process completed per unit of time.

 This is the measure of how much work is being performed.

 If the CPU is busy executing the processes, then work is
being done.

 One measure of work is the number of processes
completed per unit time is called throughput.

 For long processes, this rate may be 1 process per hour; for
short processes/transactions throughput might be 10
processes per second.

 3. Turn around time :from the point of view of a particular
process, the important criterion is how long it takes to
execute that process.

 The interval of time between the submission of a
process and its completion is the turn around time.

Turn actual time spent waiting for resources

Around = execution + including the processor and

Time time doing I/O

 This is an appropriate measure for a batch job.

4. Waiting time

➢ The CPU scheduling algorithm does not affect
the amount of time during which a process
executes or does I/O, it affects only the
amount of time that a process spends waiting
in the ready queue.

➢ Waiting time is the sum of the periods spent
waiting in the ready queue.

5. Response Time

➢ The measure of time from the submission of a
request until the first response is produced.

➢ This measure called response time, is the
amount of time it takes to start responding,
but not the time that it takes to output that
response.

4. Waiting Time

 It is the average period of time a process spends
waiting.

 It is a time spent in waiting for a resource
allocation. Therefore, waiting time is the
penalty imposed for sharing resources with
others.

 Waiting time presents a more accurate measure
of performance as compared to turnaround time
because it does not include the time a process is
executing on the CPU or performing I/O. It
includes only the time a process spends waiting.

 Waiting time can be expressed as turnaround
time minus the actual execution time.

 W(x)=T(x)-x

 Where x is the service time, W(x) is the waiting
time of job requiring x units of service and T(x)
is the job’s turnaround time.

