# First Semester M.Sc. Degree Examination, January/February 2018 (CBCS Scheme) <br> MATHEMATICS <br> M 102 T : Real Analysis 

Time : 3 Hours
Max. Marks : 70
Instructions : 1) Answer any five questions.
2) All questions carry equal marks.

1. a) Show that $x^{2} \in R\left[x^{2}\right]$ on $[0,1]$.
b) If $f(x) \in R[\alpha(x)]$ on $[a, b]$ then prove that $-f(x) \in R[\alpha(x)]$ on $[a, b]$.
c) If $f(x) \in R[\alpha(x)]$ on $[a, b]$ and $|f| \leq M$, then prove that

$$
\begin{equation*}
\int_{\mathrm{a}}^{\mathrm{b}}|\mathrm{f}| \mathrm{d} \alpha \leq \mathrm{M}[\alpha(\mathrm{~b})-\alpha(\mathrm{a})] \tag{4+5+5}
\end{equation*}
$$

2. a) If $f \in R[\alpha]$ on $[a, b]$ and $c \in R^{+}$, then prove that $c f \in R[\alpha]$ on $[a, b]$.
b) If $f(x)$ is continuous on $[a, b], \alpha(x)$ be monotonic on $[a, b]$, then prove that

$$
\int_{a}^{b} f d \alpha=f(b) \alpha(b)-f(a) \alpha(a)-\alpha(\xi)[f(b)-f(a)], \text { where } \xi \in(a, b)
$$

c) If $f_{1}, f_{2} \in R[\alpha]$ on $[a, b]$ and $f_{1} \leq f_{2}$, then show that $\int_{a}^{b} f_{1} d \alpha \leq \int_{a}^{b} f_{2} d \alpha$.
3. a) Let $f$ be Riemann integrable on $[a, b]$ and let $F(x)=\int_{a}^{x} f(t) d t$, where $a \leq x \leq b$. Then prove that $F$ is continuous on $[a, b]$. Further, show that $f(t)$ is continuous at a point $x_{0}$ on $[a, b]$. Then $F$ is differentiable at $x_{0}$ and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
b) If $\lim _{\mu(p) \rightarrow 0} S(P, f, \alpha)$ exists, then show that $f \in R[\alpha]$ on $[a, b]$ and
$\lim _{\mu(p) \rightarrow 0} S(p, f, \alpha)=\int_{a}^{b} f d \alpha$.
c) Given two functions $f$ and $g$ of bounded variation on [a, b]. Show that $f+g$ and f.g are also of bounded variation.
4. a) Let $\left\{f_{n}(x)\right\}$ be a sequence of functions converges to $f(x)$ defined on $[a, b]$ and $M_{n}=\operatorname{Sup}_{x \in[a, b]}\left|f_{n}(x)-f(x)\right|$. Then prove that $\left\{f_{n}(x)\right\}$ converges to $f(x)$ uniformly on [a, b] if and only if $\mathrm{M}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.
b) Show that $\left\{e^{-n x}\right\}$ is uniformly convergent on $[a, b]$.
c) For an infinite series of continuous functions $\sum_{n=1} f_{n}(x)$ that converges uniformly to $f(x)$ on $[a, b]$, show that $f(x)$ is continuous on $[a, b]$.
5. a) If $\left|f_{n}(x)\right|<M_{n}, \forall n \in N, \forall x \in[a, b]$ and $\sum_{n=1}^{\infty} M_{n}$ of positive reals, is convergent, then prove that $\sum_{n=1}^{\infty} f_{n}(x)$ is uniformly convergent on $[a, b]$.
b) Show that $\sum_{n=1}^{\infty} n \times e^{-n x^{2}}$ converges point-wise and not uniformly on $[0, k]$, $\mathrm{k}>0$.
c) Let $\sum_{n=0}^{\infty} f_{n}(x)$ be an infinite series of functions uniformly convergent to $f(x)$ on $[a, b]$ and each $f_{n}(x) \in R[a, b]$ then prove that $f(x) \in R[a, b]$. Also prove that $\int_{a}^{x}\left\{\sum_{n=1}^{\infty} f_{n}(t)\right\} d t=\sum_{n=k}^{\infty}\left\{\int_{a}^{x} f_{n}(t) d t\right\}$.
6. a) State and prove the Hiene-Borel theorem.
b) Define a $k$-cell prove that every $k$-cell is compact.
7. a) Suppose $f$ maps an open set $E \subset \mathbb{R}^{n}$ into $\mathbb{R}^{m}$, and $f$ is differentiable at a point $x \in E$. Then the partial derivatives $\left(D_{j} f\right)(x)$ exist, and $f^{\prime}(x) e_{j}=\sum_{i=1}^{m}\left(D_{j} f_{i}\right)(x)\left(u_{i}\right),(1 \leq j \leq n)$.
b) If $T \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, then $\|T\|<\infty$ and $T$ is uniformly continuous mapping of $\mathbb{R}^{n}$ onto $\mathbb{R}^{m}$.
c) If $\phi: X \rightarrow X$ is a contraction on a complete metric space $X$, then prove that $\phi$ has a unique fixed point.
8. State and prove the implicit function theorem.

