

I Semester M.Sc. Degree Examination, January/February 2018 (CBCS Scheme) MATHEMATICS

M104T: Ordinary Differential Equations

im	e:3	Hours Max. Marks :	70
		Instruction . Answer any five questions . All questions carry equal marks.	
1	a)	Show that $\{\psi_j(x), j=1 \text{ to n}\}$ forms a fundamental set for $L_n y=0$ on I if and only if $W(\psi_j(x), j=1 \text{ to n}) \neq 0$. $\forall x \in I$.	9
	b)	If the Wronskian of $\phi_1(x)$ and $\phi_2(x)$ is $3e^{ix}$ and if $\phi_1(x)=e^{2x}$, then find $\phi_2(x)$.	5
2	a)	Explain the method of variation of parameters of solving $L_n y = b(x)$.	9
	b)	Verify Lagrange's identity for $x^2y'' + 9xy' + 12y = 0$.	5
3	. a)	State the existence and uniqueness theorem on the solution of $y'=f(x,y)$; $y(x_0)=y_0$ and hence illustrate it for $y'=y^2$, $y(1)=-1$ in the domain $ x-1 \le a$, $ y+1 \le b$, where a and b are constants.	7
	b)	State and prove Sturm's separation theorem on the zeros of the solutions of a self-adjoint differential equation.	7
4	(a)	Establish an eigen function expansion formula and hence expand $\sin x$ in terms of orthonormal eigen functions of $y'' + \lambda y = 0$; $y(0) = 0 = y(\pi)(\lambda > 0)$	9
	b)	Construct Green's function for $y'' + \frac{1}{4}y = \sin 2x$, $y(0) = 0 = y(\pi)$.	5
000	a)	Find the ordinary, regular and irregular singular points (including ∞) of $x(1-x)$ $y'' + \{c - (a+b+1)x\}$ $y' - aby = 0$, where a, b and c are constants	7
	b)	Find the Frobenius series solution of $(2x + x^3)y' - y' - 6xy = 0$ about $x = 0$.	7
ę		Obtain the general solution of Hermite's differential equation. Prove the following:	6
		i) $(n+1) L_{n+1}(x) = (2n+1-x) L_n(x) - nL_{n-1}(x) (n \ge 1)$.	
		ii) $T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x) = 0 \ (n \ge 1).$	8

7. Find the fundamental matrix and the general solution of

$$\frac{d\vec{X}}{dt} = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end{bmatrix} \vec{X}_{1} \vec{X} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

Also, show that the solutions are linearly independent.

8. a) Explain different types of critical points of

$$\frac{dx}{dt} = ax + by$$
; $\frac{dy}{dt} = cx + dy$ (ad - bc = 0).

b) Find the stability of the critical point (0, 0) of the system.

$$\frac{dx}{dt} = -x + y^2$$

$$\frac{dy}{dt} = -y + x^{1}$$

by constructing the Liapunov function.

