First Semester M.Sc. Examination, January/February 2018 (CBCS Scheme) (2017 - 18 & Onwards) MATHEMATICS

M - 107SC : Mathematical Analysis

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answerany five questions.

2) All questions carry equal marks.

- 1. a) Let [x] denote the largest integer contained in x, that is, [x] is the integer such that $x-1 < [x] \le x$ x; and let (x) = x [x] denote the fractional part of x. What discontinuities do the functions [x] and (x) have?
 - b) Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then show that there exists a point x ∈ (a, b) such that f(x) = c.
- 2. a) Let f and g be complex continuous functions on a metric space X. Then prove that fg and f/g are continuous on X.
 - b) Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then prove that f(X) is compact. (7+7)
- 3. State and prove the following:
 - a) Generalized Mean value theorem.
 - b) Taylor's theorem.

(7+7)

- 4. a) Let f be defined on (a, b). If f is discontinuous at a point x, then define what are discontinuities of the first and second kinds.
 - b) Plot the following functions:

i)
$$f(x) = \begin{cases} x+2, & -3 < x < -2 \\ -(x+2), & -2 \le x < 0 \\ x+2, & 0 \le x < 1 \end{cases}$$

(ii)
$$f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(Assume sinx is a continuous function)

Classify the discontinuities of the functions into first and second kinds.

(7+7)

- 5. a) Suppose the $\{x_n\}$ is monotonic. Then prove that the $\{x_n\}$ converges if and only if it is bounded.
 - b) Prove that the subsequential limits of a sequence $\{x_n\}$ of real numbers form a closed subset of R.
 - c) Prove the following:

i) If p > 0, then
$$\lim_{n \to \infty} \frac{1}{n^p} = 0$$
.

ii) If
$$p > 0$$
, then $\lim_{n \to \infty} \sqrt{p} = 1$.

iii) If
$$p > 0$$
, then $\lim_{n \to \infty} (p - 1)$.

State and Cosaro's limit theorem

- a) State and Cesaro's limit theorem.
 - b) Show that $\sum_{n=1}^{\infty} a_n$ converges if and only if for given $\epsilon > 0$, there exists an integer N such that $\left|\sum_{k=1}^{m} a_k\right| < \epsilon, \forall m > n \ge N$.

c) Prove that
$$\sum_{n=0}^{\infty} \frac{1}{n(\log n)^p}$$
 converges if p > 1 and diverges if p ≤ 1. (6+4+4)

7. a) For any sequence {C_n} of positive real numbers, prove that

$$\lim_{n\to\infty}\sup\sqrt[n]{C_n}\leq\lim_{n\to\infty}\sup\frac{C_{n+1}}{C_n}$$

and

$$\lim_{n\to\infty}\inf\sqrt[n]{C_n}\geq\lim_{n\to\infty}\inf\frac{C_{n+1}}{C_n}$$

- b) Sate and prove Logarithmic test.
- c) If $\sum a_n$ converges and if $\{b_n\}$ is monotonic and bounded, then prove that $\sum a_n b_n$ converges. (4+6+4)
- 8. a) State and prove Marten's theorem.
 - b) If $\sum_{n=1}^{\infty} |a_n|$ converges, then show that every rearrangement of $\sum_{n=1}^{\infty} a_n$ converges and they all converge to the same sum.
 - c) Assume that each $a_n \ge 0$, n = 1, 2, 3, ... then, the product $\prod_{n=1}^{\infty} (1 + a_n)$ converges if and only if prove that the series $\sum_{n=1}^{\infty} a_n$ converges. (6+4+4)

560

I Semester M.Sc. Examination, February 2019 (CBCS Scheme)

M107SC: Mathematical Analysis

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any five questions.

- 2) All questions have equal marks.
- 1. a) Let (X, d_x) and (Y, d_y) be metric spaces, $E \subset X$ and $p \in E$. The function f is continuous at p, iff for every sequence (x) in E converging to P, then show that the sequence $\{f(x_n)\}\$ in Y converges to f(p).
 - b) Show that continuous function on a compact metric space is uniformly (7+7)continuous.
- 2. Define connected metric space. Prove that a continuous mapping from a (14) connected metric space into a metric space is connected.
- 3. a) If f(x) is continuous on [a, b], f'(c) exists at some point $c \in [a, b]$, g(x) is defined on an interval I which contains the range of f(x) and g (x) is differentiable at the point f(c), if h(x) = g(f(x)), then show that h(x) is differentiable at c.
 - b) With help of function $f(x) = x^2 \sin(1/x)$, prove the continuity of derivatives. (7+7)
- 4. a) State and prove L' Hospitals rule for indeterminate form of type ∞/∞ .

- b) If f (x) is real valued continuous function on [a, b] which is differentiable in (a, b) then show that there exist a point $x \in (a, b)$ such that f(b) - f(a) = (b - a) f'(x).(7+7)
- 5. a) Every bounded sequence of real number contains a convergent subsequence. Prove or disprove it.
 - b) Prove that a sequence of real number converges iff it is Cauchy sequence. (7+7)
- 6. a) Show that e is irrational.

b) Prove :
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$
. (7+7)

- BINSCIN 7. a) State and prove Cauchy integral test.
 - b) Given a series $\sum_{n=1}^{\infty} a_n$

Let
$$\alpha = \lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{n} |a_n|$$

then prove that

- i) $\sum_{n=1}^{\infty} a_n$ converges if $\alpha < 1$
- ii) $\sum_{n=1}^{\infty} a_n$ diverges if $\alpha > 1$
- iii) if $\alpha = 1$, the test gives no information.
- c) Test the convergence of

$$\sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n-1} \right) \tag{5+5+4}$$

- 8. a) State and prove Martin's theorem.b) Suppose
 - i) $\sum_{n=0}^{\infty} a_n$ converges absolutely

ii)
$$\sum_{n=0}^{\infty} a_n = A$$

iii)
$$\sum_{n=0}^{\infty} b_n = B$$

iv)
$$C_n = \sum_{k=0}^{n} a_k b_{n-k}$$
, $n = 0, 1, 2 ...$
then show that

$$\sum_{n=0}^{\infty} C_n = AB$$

c) Assume that each $a_n \ge 0$, n = 1, 2, ..., then the product $\prod_{n=1}^{\infty} (1 + a_n)$ converges. (5+5+4)