

I Semester M.Sc. Degree Examination, Jan./Feb. 2018 (CBCS Scheme) MATHEMATICS

M105T: Discrete Mathematics

Time: 3 Hours Max. Marks: 70

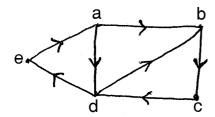
Instructions: i) Answer any five full questions.

ii) All questions carry equal marks.

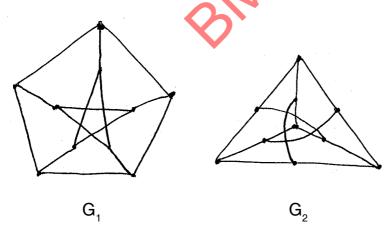
- 1. a) Explain methods of proof with examples.
 - b) Test the validity of the following arguments.

 "If there was a cricket match, then travelling was difficult. If they arrived on time, then travelling was not difficult. They arrived on time. Hence, there was no cricket match".
 - c) If $S = (\sim p \lor \sim q) \to (p \leftrightarrow \sim q)$, then find its principal disjunctive normal form. (4+5+5)
- 2. a) Suppose a patient is given a prescription of 45 pills with instruction to take at least one pill a day for 30 days. Prove that there must exist a period of consecutive days which the patient takes a total of 14 pills.
 - b) How many ways are there to distribute three different teddy bears and nine identical lollipops to four children?
 - i) Without restriction.
 - ii) With no child getting two or more teddy bears.
 - c) How many arrangements are there of TINKERER with two but not three consecutive vowels? (5+5+4)
- 3. a) Solve the recurrence relation of the tower of Hanoi problem.
 - b) Solve the recurrence relation $a_n 5a_{n-1} + 6a_{n-2} + 9a_{n-3} = 3n^2 + 2$ with $a_0 = 2$, $a_1 = -2$, $a_2 = 4$.
 - c) Using generating functions solve $a_{n+1} a_n = 3^n$, $a_0 = 1$. (4+5+5)

- 4. a) Define connectivity and reachability relations. Prove that $R^{\infty} = R \cup R^2 \cup ... \cup R^n$ for a relation R defined on a set A such that |A| = n.
 - b) Define transitive closure of a relation and find the transitive closure of the relation :



- c) Define POSET. If $A = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$ be ordered by divisibility then draw the Hasse diagram of the POSET. (4+5+5)
- 5. a) State and prove first theorem in graph theory, further, show that in any graph G, the number of vertices in odd degree is even.
 - b) Define isomorphism graphs. Verify the following graphs are isometric or not.



- c) Define self complementary graphs. Prove that any self-complementary graph has 4n or 4n + 1 vertices for $n \ge 1$. (4+5+5)
- 6. a) Let G be a connected graph. Then show that G contains an Eulerian trial if and only if G has exactly 2 odd vertices.
 - b) State and prove Dirac theorem for Hamiltonian graph.

- c) Write a short note on the following:
 - i) Konigs Berg bridge problem
 - ii) Travelling salesman problem
 - iii) Nearest neighbour method.

(4+5+5)

- 7. a) Show that any connected plane (p, q) graph (p \geq 3) with r faces $q \geq \frac{3r}{2}$ and $q \le 3p - 6$.
 - b) Define vertex and edge connectivity of a graph. Prove the following identity with usual notations $K(G) \le \lambda(G) \le \delta(G)$.
 - c) Define the following:
 - i) Covering number of a graph $\alpha_0(G)$.
 - i) Covering number of a graph $\beta_0(G)$. Find $\alpha_0(K_p)$, $\beta_0(K_p)$, $\alpha_0(C_p)$ (5+5+4)
- 8. a) Show that every non-trivial (p, q) tree T contains atleast two vertices of degree 1.
 - b) Define binary tree with an example. Prove the following binary tree with $p \ge 3$ vertices.
 - i) The number of vertices is always odd.
 - ii) The number of pendent vertices is $\frac{p+1}{2}$.
 - c) Define minimal spanning tree. Explain Krushkal's algorithm with an example.

(3+6+5)