I Year M.Sc. (DCC) Degree Examination, January 2018 (Fresh and Repeaters) (Y2K13 Scheme)
 MATHEMATICS

M - 104 : Differential Equations

Time: 3 Hours
Max. Marks : 80
Instructions: i) Answerany five full questions choosing atleast two from each Part.
ii) All questions carry equal marks.

PART-A

1. a) Establish the Liouville's formula for $\operatorname{LnY}=0$ on I. Also discuss any one consequences of the formula.
b) State and prove Sturm's separation theorem on the zeros of the solutions of a self-adjoint differential equations.
2. a) State the existence and uniqueness theorem and hence test it for

$$
\begin{equation*}
\frac{d y}{d x}=y^{2}, y(1)=-1,|x-1| \leq a,|y+1| \leq b \text { where } a \text { and } b \text { are constants. } \tag{8+8}
\end{equation*}
$$

b) Solve : $y^{\prime \prime}+\lambda y=x, y(0)=0=y(1)$ by constructing its Green's function.
3. a) Obtain the general solution of the Gauss-hypergeometric differential equation about $\mathrm{x}=0$ and $\mathrm{x}=1$.
b) Prove the orthogonal property of Chebyshev polynomials.
4. a) Find the fundamental matrix and determine e^{At} of $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{A} \underset{\sim}{x}$ where

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 3 \\
0 & -2 & 1 \\
0 & 3 & 0
\end{array}\right] ; \underset{\sim}{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

b) Construct Liapunov function and hence find the stability of the critical point $(0,0)$ of :
i) $\frac{d x}{d t}=-x+2 x^{2}+y^{2}$

$$
\frac{d y}{d t}=-y+x y
$$

ii) $\frac{d x}{d t}=x^{3}-3 x y^{4}$

$$
\frac{d y}{d t}=x^{2} y-2 y^{3}-y^{5}
$$

PART-B
5. a) Solve the following by the method of characteristics:
i) $u_{x}+u_{y}+u=1$ with $u=\sin x$ on $y=x+x^{2}$.
ii) $u u_{x}+u_{y}=1$ with $u=0$ on $y^{2}=2 x$.
b) Solve the problem $p^{2} x+q y-u=0$ with $u=-x$ on $y=1$.
6. a) Solve by the Monge's method $(1+q)^{2} r-2(1+p+q+p q) s+(1+p)^{2} t=0$.
b) Classify the problem $\sin ^{2} x u_{x x}+\sin 2 x u_{x y}+\cos ^{2} x u_{y y}=x$ and hence reduce it to its canonical form.
7. a) Show that variables separable solution of the Laplace equation in cylindrical polar coordinates yields a Bessel differential equation.
b) Using the Fourier transform, solve $U_{t}=k U_{x x}, 0 \leq x<\infty ; t \geq 0$ with
$U(x, 0)=f(x), \quad 0 \leq x<\infty ;$
$U_{x}(0, t)=0, t>0$.
8. a) Find the Green's function for $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+f(x) \delta(t),-\infty<x<\infty, t>0$ subject to, $u(x, 0)=0,-\infty<x<\infty$.
b) Determine the solution of $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+x^{2}, 0 \leq x \leq 1, t \geq 0$ with

$$
\begin{align*}
& u(x, 0)=x \\
& \frac{\partial u}{\partial t}(x, 0)=0 \quad ; 0 \leq x \leq 1 \\
& u(0, t)=1 \quad ; t \geq 0 . \tag{8+8}\\
& u(1, t)=0 \quad ; \quad
\end{align*}
$$

