7

Time : 3 Hours Max. Marks :	70
Instructions: i) Answer any five full questions. ii) All questions carry equal marks.	
 a) What do you mean by denumerable set ? Is Q, the set of rational numbers denumerable ? Justify. 	4
b) Show that :	
i) Superset of an infinite set is infinite.	
ii) Subset of a finite set is finite.	6
c) Does every infinite set contains a denumerable ? If yes, explain.	4
2. a) State Schroder-Bernstein theorem.	
Use it to prove that $(0, 1) - [0, 1]$.	3
b) Let $C = card R$. Show that $C = C$.	6
c) If $P(A)$ denote the power set of a set A then prove that card A < card $P(A)$.	5
3. a) Let (X, d) be a metric space and $d(x, y) = \frac{d(x, y)}{1 + d(x, y)}$.	
Show that (X, d_1) is a metric space by checking only triangle inequality for d_1	3
b) Show that if a convergent sequence in a metric space has infinitely many distinct points then its limit is a limit point of the set of elements of the sequence.	4

c) Prove that a subspace Y of a complete metric space is complete if it is closed. Is the converse true ? Explain.

I Semester M.Sc. Degree Examination, January 2017 (CBCS) MATHEMATICS M 103T : Topology – I

PG – 383

PG - 383

4.	4. a) Prove that if a metric space X is complete then for every neste	d sequence	
	$\{F_n\}_1^{\infty}$ of a nonempty closed sets in X with $\delta(F_n) \to 0$, $\bigcap_{n=1}^{\infty} F_n$ is a	singleton set. 6	
	b) Define a set of first category. State and prove Baire's category	theorem. 8	
5.	5. a) Prove contraction mapping theorem.	6	
	b) Show that every metric space has a completion.	8	
6.	 a) Show that intersection of two neighborhoods is a neighborhood of a neighborhood is again a neighborhood ? Justify. 	d. Is superset 4	
	b) Show that :		
	 i) an arbitrary intersection of closed sets is closed. ii) a set containing all its limit points is closed. 	6	
		-	
	c) Show that the interior of intersection of two sets is the intersection of two sets, but this is not the case for the union of two sets.	ation of their	
7.	7. a) Let (X, τ) be a topological space. Show that a subfamily \Im of τ if and only if for every $U \in \tau$ and $x \in U$ there is a $B \in \Im$ such that		
	b) Show that a function $f: X \rightarrow Y$ is continuous if and only if inve open set in Y is open in X.	rse of every 4	
	c) Show that a bijective function $f:X \rightarrow Y$ is a homeomorphism i	if and only if	
	$f(\overline{A}) = \overline{f(A)}$, for all $A \subseteq X$.	4	
8.	8. a) If C is a connected subset of (X, Y) which has a separation X = prove that either C \subseteq A or C \subseteq B.	= A ∪ B then 4	
	b) Show that closure of a connected set is connected.	5	
	c) Prove that union of family of connected sets with non-empty in	tersection. 5	