Max. Marks : 80

Instructions : 1) Answer any five questions choosing atleast two from each Part. 2) All questions carry equal marks.

I Semester M.Sc. Examination, January 2017 (R.N.S.) (2011 Onwards) MATHEMATICS M 103 : Topology – I

PART – A

1.	a)	Let $f: X \to Y$ be a one-one correspondence. If x is infinite then prove that y is infinite.	8		
	b)	Prove that $N \times N$ is denumerable, where N is the set of natural numbers.	8		
2.	a)	Prove that the open interval (0, 1) of real numbers is a non-denumerable set.	8		
3.	b) a)	Define a metric on a set. If d is a metric on a set X, then prove that	8		
		$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, for all $x, y, \in X$ is a metric on X.	8		
	b)	Show that subspace of a complete metric space is complete if and only if it is closed.	8		
4.	a)	State and prove contraction mapping theorem.	8		
	b)	State and prove Cantor's intersection theorem.	8		
PART – B					
5.	a)	Let (X, 7) be a topological space. If A is any subset of X and d (A) is its derived set then prove that A \cup d (A) is closed.	8		
	b)	With usual notations prove the following :	8		
		i) $\overline{A \cup B} = \overline{A} \cup \overline{B}$			
		ii) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.			

Time : 3 Hours

PG – 856

P.T.O.

6.	a)	Show that a function $f:X\to Y$ is continuous if and only if inverse images of open sets are open.	7
	b)	Given a function $f: X \to Y$, prove that the following are equivalent : i) f is continuous	9
		ii) B is closed in Y implies f^{-1} (B) is closed in X	
		iii) $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.	
7.	a)	State and prove pasting lemma.	5
	b)	Define a connected set. Show that the closure of a connected set is connected.	5
	c)	If $\{C_{\lambda}\}$ is a family of connected subsets of (X, γ) such that $\bigcap_{\lambda} C_{\lambda} \neq \phi$ then	
		prove that $\bigcup_{\lambda} C_{\lambda}$ is connected.	6
8.	a)	Define component of a topological space. Show that components are closed.	5
	b)	Prove that a path connected set is always connected.	5
	c)	Show that the image of a locally connected set under continuous open map is	
		locally connected.	6

PG – 856

###