

PG – 855

I Semester M.Sc. Examination, January 2017 (R.N.S.) (2011 Onwards) **MATHEMATICS** M - 102 : Real Analysis

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer any five questions, choosing atleast one from each Part.

2) All questions carry equal marks.

PART - A

- 1. a) Show that $f(x) = -x^2 \in R[0, c]$.
 - b) If $f \in R[\alpha]$ on [a, b], then prove that $\int_{a}^{b} f d\alpha = \int_{a}^{b} f d\alpha = \lambda [\alpha(b) \alpha(a)],$
 - where $\lambda \in [m, M]$ (m : greatest lower bound and M : least upper bound).
 - c) Prove that $f \in R[\alpha]$ on [a, b] iff given \in > 0, \exists a partition P of $[a, b]/U(P, f, \alpha) - L(P, f, \alpha) < \in$. 6
- $\text{2. a) If } f_1, f_2 \in \text{ R } [\alpha] \text{ on } [a,b] \text{ and } f_1 \leq f_2, \text{ then show that } \int_a^b f_1 \, d\alpha \leq \int_a^b f_2 \, d\alpha \ .$ 4
 - b) If $f \in R[\alpha]$ on [a, b], $f \in [m, M]$ and ϕ is a continuous function of f on [m, M], then show that ϕ (f(x)) \in R [α] on [a, b]. 8
 - c) Show that $|f| \in R[\alpha]$ on [a, b] if $f \in R[\alpha]$ on [a, b]. Give an example of a function f such that $|f| \in R[\alpha]$ on [0, 1] and $f \notin R[\alpha]$ on [0, 1]. 4
- 3. a) Let $f \in R$ [a, b] and let $F(x) = \int_{a}^{x} f(t) dt$ [a $\le x \le b$). Then prove that F(x) is continuous on [a, b]. Further, show that if f(x) is continuous at x_0 in [a, b], then F is differentiable and $F'(x_0) = f(x_0)$. 8

4

6

4

8

8

16

6

6

b) If $\lim_{\mu(p)\to 0}~S~(P,\,f,\,\,\alpha\,)$ exists, then show that $f\in~R~[\,\alpha\,]$ on $[a,\,b]$ and

$$\lim_{\mu(p)\to 0} S(P, f, \alpha) = \int_{a}^{b} f d\alpha.$$

c) Show that a function of bounded variation on [a, b] is bounded.

PART-B

- 4. State and prove Cauchy's principle for uniform convergence of
 - a) $\{f_n(x)\}\$ on [a, b],

b)
$$\sum_{n=1}^{\infty} f_n(x)$$
 on [a, b].

- 5. a) Let $\{f_n(x)\}$ be uniformly convergent to f(x) on [a, b] and let each $f_n(x)$ be continuous on [a, b]. Prove that f(x) is continuous on [a, b].
 - b) Discuss the properties of any two of exponential, logarithmic and Fourier series.
- 6. State and prove Stone-Weierstrass theorem.

PART-C

- 7. a) Let E be an open subset of R^n and $f: E \to R^n$ be a differentiable function at $x_0 \in E$. Then prove that f is continuous at x_0 and $f'(x_0)$ is unique.
 - b) If $T \in L(I\mathbb{R}^n, I\mathbb{R}^m)$, then prove that $||T|| < \infty$ and T is a uniformly continuous mapping of $I\mathbb{R}^n$ onto $I\mathbb{R}^m$.
 - c) Discuss the continuity on R² of f(x, y) = $\begin{cases} x^2 y^2, & x \neq 0, y \neq 0 \\ 0, & x = 0, y = 0 \end{cases}$
- 8. State and prove the implicit function theorem.
