I Semester M.Sc. Examination, January 2017
 (R.N.S.) (2011 Onwards)
 MATHEMATICS
 M-102 : Real Analysis

Time: 3 Hours
Max. Marks : 80

Instructions : 1) Answerany five questions, choosing atleast one from each Part.
 2) All questions carry equal marks.

PART - A

1. a) Show that $f(x)=-x^{2} \in R[0, c]$.
b) If $f \in R[\alpha]$ on $[a, b]$, then prove that $\int_{a}^{b} f d \alpha=\int_{a}^{b} f d \alpha=\int_{a}^{b} f d \alpha=\lambda[\alpha(b)-\alpha(a)]$, where $\lambda \in[m, M]$ (m : greatest lower bound and M : least upper bound).
c) Prove that $f \in R[\alpha]$ on $[a, b]$ iff given $\in>0, \exists$ a partition R of $[a, b] / U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
2. a) If $f_{1}, f_{2} \in R[\alpha]$ on $[a, b]$ and $f_{1} \leq f_{2}$, then show that $\int_{a}^{b} f_{1} d \alpha \leq \int_{a}^{b} f_{2} d \alpha$.
b) If $f \in R[\alpha]$ on $[a, b], f \in[m, M]$ and ϕ is a continuous function of f on $[m, M]$, then show that $\phi(f(x)) \in R[\alpha]$ on $[a, b]$.
c) Show that $|f| \in R[\alpha]$ on $[a, b]$ if $f \in R[\alpha]$ on $[a, b]$. Give an example of a function f such that $|f| \in R[\alpha]$ on $[0,1]$ and $f \notin R[\alpha]$ on $[0,1]$.

4
3. a) Let $f \in R[a, b]$ and let $F(x)=\int_{a}^{x} f(t) d t[a \leq x \leq b)$. Then prove that $F(x)$ is continuous on $[a, b]$. Further, show that if $f(x)$ is continuous at x_{0} in $[a, b]$, then F is differentiable and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
b) If $\lim _{\mu(p) \rightarrow 0} S(P, f, \alpha)$ exists, then show that $f \in R[\alpha]$ on $[a, b]$ and

$$
\begin{equation*}
\lim _{\mu(P) \rightarrow 0} S(P, f, \alpha)=\int_{a}^{b} f d \alpha . \tag{4}
\end{equation*}
$$

c) Show that a function of bounded variation on $[a, b]$ is bounded.
4. State and prove Cauchy's principle for uniform convergence of
a) $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}$ on $[\mathrm{a}, \mathrm{b}]$,
b) $\sum_{n=1}^{\infty} f_{n}(x)$ on $[a, b]$.
5. a) Let $\left\{f_{n}(x)\right\}$ be uniformly convergent to $f(x)$ on $[a, b]$ and let each $f_{n}(x)$ be continuous on $[\mathrm{a}, \mathrm{b}]$. Prove that $\mathrm{f}(\mathrm{x})$ is continuous on $[\mathrm{a}, \mathrm{b}]$.
b) Discuss the properties of any two of exponential, logarithmic and Fourier series.
6. State and prove Stone-Weierstrass theorem.

PART-C

7. a) Let E be an open subset of R^{n} and $f: E \rightarrow R^{n}$ be a differentiable function at $x_{0} \in E$. Then prove that f is continuous at x_{0} and $f^{\prime}\left(x_{0}\right)$ is unique.
b) If $T \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, then prove that $\|T\|<\infty$ and T is a uniformly continuous mapping of \mathbb{R}^{n} onto \mathbb{R}^{m}.
c) Discuss the continuity on R^{2} of $f(x, y)=\left\{\begin{array}{cl}x^{2}-y^{2} & , x \neq 0, \\ 0 & , x=0, \\ 0=0\end{array}\right.$.
8. State and prove the implicit function theorem.
