

I Semester M.Sc. Examination, January 2017 (R.N.S.) (2011 Onwards) MATHEMATICS M – 102 : Real Analysis

Time: 3 Hours

Instructions : 1) Answer **any five** questions, choosing atleast **one** from **each** Part.

2) All questions carry equal marks.

PART - A

1. a) Show that
$$f(x) = -x^2 \in R[0, c]$$
.

b) If $f \in R[\alpha]$ on [a, b], then prove that $\int_{a}^{b} f d\alpha = \int_{a}^{b} f d\alpha = \lambda[\alpha(b) - \alpha(a)]$,

where $\lambda \in [m, M]$ (m : greatest lower bound and M : least upper bound).

c) Prove that $f \in R[\alpha]$ on [a, b] iff given $\in > 0, \exists$ a partition R of $[a, b]/U(P, f, \alpha) - L(P, f, \alpha) < \in$. 6

2. a) If
$$f_1, f_2 \in \mathbb{R}[\alpha]$$
 on [a, b] and $f_1 \leq f_2$, then show that $\int_a^b f_1 d\alpha \leq \int_a^b f_2 d\alpha$. **4**

- b) If $f \in R[\alpha]$ on [a, b], $f \in [m, M]$ and ϕ is a continuous function of f on [m, M], then show that ϕ (f(x)) $\in R[\alpha]$ on [a, b].
- c) Show that $|f| \in R[\alpha]$ on [a, b] if $f \in R[\alpha]$ on [a, b]. Give an example of a function f such that $|f| \in R[\alpha]$ on [0, 1] and $f \notin R[\alpha]$ on [0, 1]. 4

3. a) Let
$$f \in R$$
 [a, b] and let F (x) = $\int_{a}^{x} f(t) dt [a \le x \le b)$. Then prove that F(x) is continuous on [a, b]. Further, show that if f(x) is continuous at x₀ in [a, b], then F is differentiable and F'(x₀) = f(x₀).

• •

P.T.O.

8

PG – 855

Max. Marks : 80

4

6

8

b) If $\lim_{\mu(p)\to 0} S$ (P, f, α) exists, then show that $f \in R[\alpha]$ on [a, b] and

$$\lim_{\mu(p)\to 0} S(P, f, \alpha) = \int_{a}^{b} f d\alpha.$$
 4

c) Show that a function of bounded variation on [a, b] is bounded.

PART-B

- 4. State and prove Cauchy's principle for uniform convergence of
 - a) $\{f_n(x)\}$ on [a, b],
 - b) $\sum_{n=1}^{\infty} f_n(x)$ on [a, b]. 16
- 5. a) Let $\{f_n(x)\}\$ be uniformly convergent to f(x) on [a, b] and let each $f_n(x)$ be continuous on [a, b]. Prove that f(x) is continuous on [a, b].
 - b) Discuss the properties of any two of exponential, logarithmic and Fourier series.
- 6. State and prove Stone-Weierstrass theorem.

- 7. a) Let E be an open subset of \mathbb{R}^n and $f : E \to \mathbb{R}^n$ be a differentiable function at $x_0 \in E$. Then prove that f is continuous at x_0 and $f'(x_0)$ is unique.
 - b) If $T \in L$ (IRⁿ, IR^m), then prove that $||T|| < \infty$ and T is a uniformly continuous mapping of IRⁿ onto IR^m.
 - c) Discuss the continuity on R² of f(x, y) = $\begin{cases} x^2 y^2 & x \neq 0, y \neq 0 \\ 0 & x = 0, y = 0 \end{cases}$.
- 8. State and prove the implicit function theorem.

4

8

8

16

6

6

16