I Semester M.Sc. Degree Examination, January 2017

(R.N.S.) (2011 Onwards)

MATHEMATICS

M104 : Ordinary Differential Equations

Time: 3 Hours
Max. Marks : 80

Instructions: 1) All questions carry equal marks.

2) Solve any five questions choosing atleast two from each Part.

PART-A

1. a) Prove that the n solutions $\left\{\phi_{j} \cdot(x), j=1\right.$ to $\left.n\right\}$ of $L_{n} y=0$ on I are linearly independent iff $W\left\{\phi_{j} \cdot(x), j=1\right.$ to $\left.n\right\} \neq 0$ forall $x \in I$.
b) Using Liouville's formula, compute the Wronskian of the independent solutions of $y^{(5)}-y^{(4)}-y^{1}+y=0$ in $[0,1]$.
c) Define adjoint and self-adjoint differential equations.
2. a) Establish the Green's formula for L_{n} the operator L_{n} and hence prove that $L_{n}^{* *}=L_{n}$, where L_{n}^{*} is the adjoint operator of L_{n}.
b) State and prove Sturm's separation theorem on the zeros of the solutions of a self-adjoint differential equation. Show that zeros of $\sin (\log x)$ and $\cos (\log x)$ separate each other.
3. a) Explain the method of variation of parameters of finding the general solution of $L_{n} y=b(x)$.
b) State the existence and uniqueness theorem on the solution of the IVP: $y^{\prime}=f(x, y) ; y\left(x_{0}\right)=y_{0}$ on the interval $\left|x-x_{0}\right| \leq h$.
Find the value of ' h ' for the IVP: $y^{\prime}=y^{2}, y(1)=-1$.
4. a) Define an eigenvalue problem. Find the eigenvalues and eigen functions of $\frac{d}{d x}\left(x y^{\prime}\right)+\frac{\lambda}{x} y=0 ; y^{\prime}(1)=0=y^{\prime}\left(e^{2 \pi}\right)$. Where λ is non-negative. Expand logx in terms of orthonormal eigen functions of the above eigenvalue problem.
b) Obtain the Green's function for the eigenvalue problem

$$
y^{\prime \prime}+\lambda y=b(x) ; y(0)=0=y(\pi) .
$$

PART-B
5. a) Find the series solution of the Hermite differential equation, $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$, about the ordinary point $x=0$, where n is non-negative integer. Find its general solution.
b) Using the Frobenius method, obtain the general solution of the equation $x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-3\right) y=0$, about the regular singular point $x=0$.
c) Prove that, $\frac{1}{1-t} \exp \left\{-\frac{t x}{1-t}\right\}=\sum_{n=0}^{\infty} L_{n}(x) t^{n}$.
6. a) Find all the singular points of the equation,
$x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$. Find the indicial equations and the exponents about each of the regular singular points. Put $x=\frac{1}{t}$ and transform the equation and determine the type of singular point at infinity.
b) Determine the Chebyshev polynomial solution of $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$.
c) Prove that $\left(1-x^{2}\right) T_{n}^{1}(x)+n x T_{n}(x)-n T_{n-1}(x)=0$.
7. a) Find the fundamental matrix solution of $\frac{d x}{d t}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 1\end{array}\right] x$.
b) Determine the nature and stability of the critical point in the following :
i) $\frac{d x}{d t}=-2 x+4 y, \frac{d y}{d t}=-2 x+6 y$
ii) $\frac{d^{2} x}{d t^{2}}=+2 b \frac{d x}{d t}+a^{2} x=0$ when $b>a$ are real constants.
c) Determine the nature and stability of the critical point $(0,0)$ in the following :

$$
\frac{d x}{d t}=x+x^{2}-3 x e^{x}, \frac{d y}{d t}=-2 x+y+3 y e^{y}
$$

8. a) Find all the critical points in the following non-linear system

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=1-x y, \frac{\mathrm{dy}}{\mathrm{dt}}=x-y^{3}
$$

Determine the nature and stability of each of the critical point.
b) Using Liapunov method determine the stability of the critical point $(0,0)$ in the following:
i) $\frac{d x}{d t}=y-2 x^{3}, \frac{d y}{d t}=-2 x-3 y^{5}$
ii) $\frac{d x}{d t}=-x^{3}+3 x y^{2}, \frac{d y}{d t}=x^{2} y-4 y^{3}$
iii) $\frac{d x}{d t}=2 x y+x^{3}, \frac{d y}{d t}=2 x^{2}-y^{3}$.

