First Semester M.Sc. Examination, January 2017
 (CBCS)
 MATHEMATICS
 M 104T : Ordinary Differential Equations

Time: 3 Hours
Max. Marks : 70

Instructions : 1) All questions have equal marks.

2) Answerany five questions.
1. a) Let $y_{1}, y_{2}, y_{3} \ldots, y_{n}$ be a fundamental set of $L_{n} y=0$. Then show that $z_{1}, z_{2}, z_{3}, \ldots, z_{n}$ also form a fundamental set of $L_{n} y=0$ iff there exists a non singular matrix A such that
$\left[z_{1}, z_{2}, z_{3}, \ldots, z_{n}\right]^{\top}=A\left[y_{1}, y_{2}, y_{3} \ldots, y_{n}\right]^{\top}$.
b) If the Wronskian of $y_{1}(x)$ and $y_{2}(x)$ is $3 e^{4 x}$ andiit $y_{1}(x)=e^{2 x}$, then find $y_{2}(x)$.
2. a) State and prove Sturm's separation theorem.
b) Let $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be the two functions having n continuous derivatives in $[\mathrm{a}, \mathrm{b}]$. Then prove that

$$
\begin{equation*}
\int_{a}^{b} g(x) L_{n} f(x) d x=\int_{a}^{b} f(x) L_{n}^{*} g(x) d x+\{[f, g](x)\}_{a}^{b} \tag{7+7}
\end{equation*}
$$

3. a) If $y_{1}(x)$ is a solution of $y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$. Then show that $y_{2}(x)=y_{1}(x) f(x)$ is also a solution of the same differential equation provided $f^{\prime}(x)$ satisfies the equation $\left(y_{1}^{2} y\right)^{\prime}+a_{1}(x)\left(y_{1}^{2} y\right)=0$.
Also prove that $y_{1}(x)$ and $y_{2}(x)$ are linearly independent.
b) Define a Lipschitz condition and test the validity of this condition with respect

$$
\begin{equation*}
\text { to } y \text { for } f(x, y)=\frac{\cos x}{x^{2}}\left(y+y^{2}\right) ;|x-1|<\frac{1}{2},|y| \leq 1 \text {. } \tag{7+7}
\end{equation*}
$$

4. a) Define the self-adjoint eigenvalue problem. Also prove that the eigenvalues of a self-adjoint eigenvalue problem are real.
b) Show that the eigen functions corresponding to the distinct eigenvalues of a self-adjoint eigenvalue problem are orthogonal over the same interval.
P.T.O.
5. a) Define ordinary, regular and irregular singular points of a differential equation and hence find the same for
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+N y=0, N$ is a constant.
b) Find the series solution of
$\left(x^{2}-1\right) y^{\prime \prime}+3 x y^{\prime}+x y=0, y(0)=4, y^{\prime}(0)=6$.
6. a) Obtain the general solution of the Laguerre differential equation.
b) Prove the following :
i) $x L_{n}^{\prime}(x)=n L_{n}(x)-n L_{n-1}(x)$.
ii) $L_{n}^{\prime}(x)=-\sum_{m=0}^{n-1} L m(x)$.
7. a) Express an $n^{\text {th }}$ - order differential equation as a system of first order differential equation and hence obtain it for $y^{\prime \prime \prime}-14 y^{\prime \prime}+10 y^{\prime}-16 y=16 t$.
b) Find the fundamental matrix and the general solution of $\underset{\sim}{X}(t)=A \underset{\sim}{X}(t)$

$$
\text { where } A=\left[\begin{array}{ll}
5 & 4 \tag{7+7}\\
1 & 2
\end{array}\right], \underset{\sim}{X}(t)=\left[\begin{array}{ll}
x_{1} & (t) \\
x_{2} & (t)
\end{array}\right] \text {. }
$$

8. a) Define the various types of critical points of the linear system

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y, \\
& \frac{d y}{d t}=c x+d y, a d-b c \neq 0 .
\end{aligned}
$$

b) Locate the critical point and find the nature of the system
$\frac{d x}{d t}=x+y$,
$\frac{d y}{d t}=3 x-y$.
Also find the equation of phase path.

