

PG - 858

I Semester M.Sc. Degree Examination, January 2017 (R.N.S.) (2011 Onwards) **MATHEMATICS**

M - 105: Discrete Mathematics

Time: 3 Hours Max. Marks: 80

Instructions: i) Answer any five full questions, choosing atleast two from each Part.

ii) All questions carry equal marks.

PART-A

- 1. a) Explain the following:
 - i) Rules of inference
 - ii) Rule of syllogism
 - iii) Modus tollens
 - iv) Modus pones
 - v) Rule of disjunctive syllogism.
 - b) Prove that the following are valid arguments

ii)
$$\neg p \leftrightarrow q$$

$$q \rightarrow r$$

$$r$$

- c) Write down the following proposition in symbolic form and find its negation "If all triangles are right angled, then no triangle is equiangular".
- d) Consider the following open statements with the set of all real numbers as the universe

$$p(x): x \geq 0 \ ; \ q(x): x^2 \geq 0 \ ; \ r(x): x^2 - 3x - 4 = 0 \ and \ s(x): x^2 - 3 > 0.$$

Determine the truth values of the following statements

i)
$$\exists x, p(x) \land q(x)$$

ii)
$$\forall x, p(x) \rightarrow q(x)$$

iii)
$$\forall x, q(x) \rightarrow s(x)$$

iv)
$$\forall x, r(x) \rightarrow p(x)$$

4

5

4

3

2. a) Find the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 30$, where

$$X_1 \ge 2, X_2 \ge 3, X_3 \ge 4, X_4 \ge 2, X_5 \ge 0.$$

3

b) Write short note on Catalan numbers and Ramsay numbers.

5

- c) How many integers between 1 and 300 are
 - i) divisible by atleast one of 5, 6, 8
 - ii) divisible by none of 5, 6, 8.

5

d) Prove that every set of 37 positive numbers contains atleast two integers that have the same remainder upon divisible by 36.

3

3. a) Find the recurrence relation and the initial condition for the sequence 0, 2, 6, 12, 20, 30, 42, Hence find the general term of the sequence.

4

b) Tower of Hanoi problem: r circular rings of tapering sizes are slipped on to a peg with the largest ring at the bottom. These rings are to be transferred one at a time onto a another peg and there is a third peg available on which rings can be left temporarily. If, during process of transferring the rings, no ring may be placed on top of a smaller one, in how many moves can these rings be transferred with their relative positions unchanged?

6

- c) Using generating function, find the number of
 - i) non-negative and
 - ii) positive integer solutions of the equation $x_1 + x_2 + x_3 + x_4 = 25$.

6

- 4. a) Define:
 - a) Equivalence relation
 - b) Zero-one matrices.

Let s be the set of all non-zero integers and $A = s \times s$. On, A define the relation R by (a, b) R (c, d) if and only if ad = bc. Show that R is an equivalence relation.

5

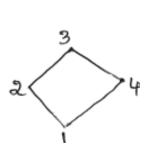
b) Let A = {1, 2, 3, 4, 6, 12}. On A, define the relation R by a R b if and only if a divides b. Prove that R is a partial order on A. Draw the Hasse diagram for this relation.

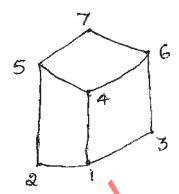
6

c) Define the terms:

5

- i) Lattice
- ii) Bounded lattice and
- iii) Distributive lattice. Which of the following Hasse diagrams represent lattice?





PART_B

5. a) Define a connected graph. If $q > \frac{1}{2}(p-1)(p-2)$ then prove that a simple (p, q) graph is connected.

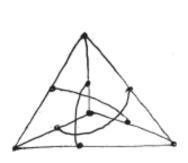
5

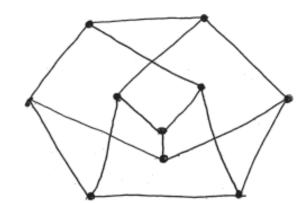
b) If G is a simple graph in which every vertex has degree atleast K, then prove that G contains a path of length at least K. Hence, deduce that for $K \ge 2$, G contains a cycle of length atleast K + 1.

6

c) What are isomorphic graphs? Determine whether the following graphs are isomorphic.

5





5

5

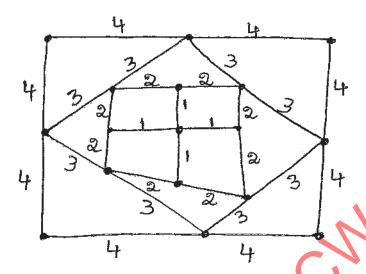
5

6

6

- 6. a) Define centre of a graph. Prove that the centre of a tree is either K₁ or K₂. 5
 - b) Define a spanning tree. Prove that a graph is connected if and only if it has a spanning tree.

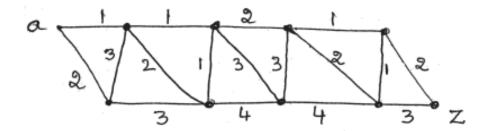
c) Find the minimum spanning tree of the following graph using Prim's algorithm. 6



7. a) Define a bipartite graph. Find under what condition the complete bipartite graph $K_{m,n}$ has an Eulerian cycle, explain.

b) Prove that a simple graph with p-vertices, p >2 is Hamiltonian if the degree of every vertex is greater than or equal to p/2.

c) Find a shortest distance path between the vertices 'a' and 'z' using Dijkstra's algorithm.



- 8. a) Define a binary tree. Describe binary search tree algorithm with an example.
 - b) Define planar graph. Prove that Kuratowski's two graphs are non-planar. 5
 - c) State and prove Euler's polyhedron formula. 5