P.T.O.

6.

First Semester M.Sc. Examination, January 2016 (CBCS) MATHEMATICS M 103 T: Topology - I

Time: 3 Hours Max. Marks: 70	0
Instructions: i) Answer any five full questions. ii) All questions carry equal marks.	
 1. a) Define a finite and infinite sets. Let g: X → Y be an one-one correspondence. If the set X is infinite then prove that Y is infinite. b) Prove that the set X is finite if and only if either X = φ or X is one-one 	7
correspondence with some N _k .	7
2. a) State and prove Schroder-Bernstein theorem.	8
b) Define a denumerable set. Prove that every infinite subset of a denumerable set is denumerable.	6
 3. a) Let A ⊆ (X, d) then prove the following: i) X – A is open 	
ii) $D(A) \subseteq A$, where $D(A)$ is the derived set of A.	4
b) Prove that in a metric space (X, d), a closed ball is a closed set.c) Prove that every metric space is a Hausdorff space.	5 5
 4. a) Show that a mapping f : X → Y is continuous if and only if {x_n} → x in X implies {f(x_n)} → f(x) in Y. 	6
 b) Define contraction mapping. Show that a contraction on a complete metric space has a unique fixed point. 	8
5. a) Show that every complete metric space is of the second category.b) Prove that if f is an isometry, then f is a homeomorphism.	8 6
6. a) Define a topology on a non-empty set. Prove that the intersection of tw topologies is again a topology. Is the union of two topologies a topology? Justify.	, 10
 b) Prove that a set is closed if and only if it contains all its limit points. c) Prove that a set A in (X, 𝒯) is open if and only if it is a neighbourhood of ea of its points. 	ıch

PG-144

7

7

7

a) Define interior, closure and boundary of a subset A of a topological space X.
 If A, B are any two subsets of X then prove the following:

i)
$$X - A^{\circ} = \overline{X - A}$$

ii)
$$b(A) = \overline{A} - A^{\circ}$$

iii)
$$\overline{A} - \overline{B} \subset \overline{A - B}$$

iv)
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
.

- b) Let (X,\mathcal{I}) be a topological space and β a subfamily of \mathcal{I} , then prove that β is a base for \mathcal{I} if and only if $U \in \mathcal{I}$, $x \in U$ implies there is a B and β such that $x \in B \subseteq U$.
- 3. a) Show that the mapping $f: X \to Y$ is continuous if and only if $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$, $\forall B \subseteq Y$.
 - b) Define a connected space. Give an example. Prove that the continuous image of a connected space is connected.

I Semester M.Sc. Degree Examination, January 2017 (CBCS)

MATHEMATICS M 103T : Topology - I

Time: 3 Hours	Max. Marks: 70
Instructions: i) Answer any five full questions. ii) All questions carry equal marks.	
 a) What do you mean by denumerable set ? Is Q, the set of rational denumerable ? Justify. 	numbers 4
b) Show that :	
 Superset of an infinite set is infinite. 	
ii) Subset of a finite set is finite.	6
c) Does every infinite set contains a denumerable ? If yes, explain.	4
a) State Schroder-Bernstein theorem.	
Use it to prove that (0, 1) ~ [0, 1].	3
b) Let C = card R. Show that C.C = C	6
c) If P(A) denote the power set of a set A then prove that card A < of	card P(A). 5
3. a) Let (X, d) be a metric space and $d(x, y) = \frac{d(x, y)}{1 + d(x, y)}$.	
Show that (X, d ₁) is a metric space by checking only triangle ine	quality for d ₁ .
b) Show that if a convergent sequence in a metric space has infidistinct points then its limit is a limit point of the set of elements sequence.	
c) Prove that a subspace Y of a complete metric space is complete	e if it is

closed. Is the converse true? Explain.

PG - 383

6

8

6

8

6

4

6

5

5

4. a) Prove that if a metric space X is complete then for every nested sequence

$$\left\{\!F_n\right\}_1^\infty \text{ of a nonempty closed sets in } X \text{ with } \delta(F_n) \to 0, \bigcap_{n=1}^\infty F_n \text{ is a singleton set}.$$

- b) Define a set of first category. State and prove Baire's category theorem.
- 5. a) Prove contraction mapping theorem.
 - b) Show that every metric space has a completion.
- 6. a) Show that intersection of two neighborhoods is a neighborhood. Is superset of a neighborhood is again a neighborhood? Justify.
 - b) Show that:
 - i) an arbitrary intersection of closed sets is closed.
 - ii) a set containing all its limit points is closed.
 - c) Show that the interior of intersection of two sets is the intersection of their interiors, but this is not the case for the union of two sets.
- 7. a) Let (X, τ) be a topological space. Show that a subfamily \mathscr{F} of τ is a base for τ if and only if for every $U \in \tau$ and $x \in U$ there is a $B \in \mathscr{F}$ such that $x \in B \subseteq U$.
 - b) Show that a function f: X → Y is continuous if and only if inverse of every open set in Y is open in X.
 - c) Show that a bijective function $f: X \to Y$ is a homeomorphism if and only if $f(\overline{A}) = \overline{f(A)}$, for all $A \subseteq X$.
- 8. a) If C is a connected subset of (X, Y) which has a separation $X = A \cup B$ then prove that either $C \subseteq A$ or $C \subseteq B$.
 - b) Show that closure of a connected set is connected.
 - c) Prove that union of family of connected sets with non-empty intersection.

I Semester M.Sc. Degree Examination, January/February 2018 (CBCS Scheme) MATHEMATICS

M103T: Topology - I

Time: 3 Hours

Max. Marks: 70

Instructions: i) Answer any five questions.

- ii) All questions carry equal marks.
- 1. a) Let X be an infinite set and $x_0 \in X$, then prove that $X \{x_0\}$ is infinite.
 - b) Define countable set. Prove that a set X is infinite if and only if either $X = \emptyset$ or X is in one-to-one correspondence with some Y_k , where $Y_k = \{1, 2, 3, ..., k\}$ set of all natural numbers from 1 to k. (6+8)
- a) Let X and Y be sets. If X is equivalent to a subset of Y and Y is equivalent to a subset of X, then prove that X and Y are equivalent.
 - b) If P(A) denote the power set of a set A, then prove that card $(P(A)) = 2^{card(A)}$. (9+5)
- 3. a) Define a metric space. If d is a metric on X, prove that $P(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, $\forall x, y \in X$ is a metric on X.
 - b) Prove that a subspace Y of complete metric space (X, d) is complete if and only if it is closed.
 (7+7)
- 4. a) State and prove contraction mapping theorem.
 - b) State and prove Cantor's intersection theorem.

(6+8)

- 5. a) Prove that an isometry is a homeomorphism but not conversely.
 - b) Prove that every metric space has a completion.

(7+7)

- 6. a) Prove that every metric space is a topological space.
 - b) Prove that a set is open if and only if it is neighbourhood of each of its points.
 - c) Prove that a point $x \in (X, \mathcal{I})$ belongs to the closure of a set A if and only if every open set G which contains x has a non-empty intersection with A. (4+4+6)

PG - 252

- 7. a) Prove that $f:(X,\mathcal{F})\to (Y,\mathfrak{U})$ is continuous at $x\in X$ if and only if V is a neighbourhood of $f(x)\Rightarrow f^{-1}(V)$ is a neighbourhood of x.
 - b) Prove that a bijective function $f:(X,\mathcal{I})\to (Y,\mathfrak{U})$ is a homeomorphism if and only if $f(A^0)=[f(A)]^0, \forall A\subseteq X$. (6+8)
- 8. a) Prove that a topological space (X, \mathcal{I}) is connected if and only if the only continuous map from X to the 2-point space over the constant map.
 - b) Prove that the components of a totally disconnected space are its points.

(7+7)