I Semester M.Sc. Degree Examination, January 2016 (CBCS) MATHEMATICS M 102 T . D

M 102 T : Real Analysis

Time: 3 Hours

Max. Marks: 70

5

5

6

3

Instructions: 1) Answer any five questions.

2) All questions carry equal marks.

1. a) Show that (3x + 1) is Riemann integrable on [1, 2].

b) Prove that f ∈ R[α] on [a, b] if and only if given ε > 0, there exists a partition
 P of [a, b] such that U(P, f, α) – L(P, f, α) < ε.

b) If $f \in R[\alpha_1]$ on [a, b] and $f \in R[\alpha_2]$ on [a, b], then prove that $f \in R[\alpha_1 + \alpha_2]$ on [a, b].

2. a) If f_1 , $f_2 \in R[\alpha]$ on [a, b] and $f_1 \le f_2$, then show that $\int_1^b f_1 d\alpha \le \int_2^b f_2 d\alpha$.

b) If f(x) is continuous on [a, b] and $\alpha(x)$ be monotonic on [a, b], prove that $\int\limits_a^b f. \ d\alpha = f(b)\alpha(b) - f(a)\alpha(a) - \alpha(\xi)[f(b) - f(a)], \text{ where } \xi \in (a,b).$

c) Give an example of a function f such that $|f| \in R[\alpha]$ on [0, 1] and $f \notin R[\alpha]$ on [0, 1].

3. a) If $f \in R$ [a, b] and if there exists a function F on [a, b] such that F' = f, then prove that $\int_a^b f dx = F(b) - F(a)$.

b) If f and ϕ are continuous on [a, b] and ϕ is strictly increasing on [a, b] and ψ is an inverse function of ϕ , then prove that $\int_a^b f(x)dx = \int_{\phi(a)}^{\phi(b)} f(\psi(g)) d\psi(g)$

c) Define function of bounded variation let f and g be function of bounded variation on [a, b]. Show that $f \pm g$ and f.g are also functions of bounded variation.

PG-143

a) Define uniform convergence of a sequence of functions {f_n(x)} on [a, b].
 State and prove Cauchy's criterion for uniform convergence of f_n(x) on [a, b].

5

5

4

8

6

6

6

2

- b) Show that for -1 < x < 1, the series $\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \dots = \frac{1}{1-x}$.
- c) Test for uniform convergence of the sequence [tan⁻¹(nx)] on [a, b].
- 5. a) Suppose $f_n \to f$ uniformly on [a, b] and if $x_0 \in [a, b]$ such that $\lim_{x \to x_0} f(x) = a_n$ for $n = 1, 2, 3, \ldots$ Then prove that
 - i) {a_n} converges
 - ii) $\lim_{x\to x_0} f_n(x) = \lim_{n\to\infty} \lim_{x\to x_0} f_n(x)$.
 - b) Let $\{f_n(x)\}$ be a sequence of functions uniformly convergent to f(x) on [a, b] and each $f_n(x) \in R$ [a, b]. Then prove that $f(x) \in R$ [a, b]. Also prove $\lim_{n \to \infty} \int\limits_a^x f_n(t) dt = \int\limits_a^x f(t) dt \ \forall x \in [a, b].$
 - c) Show that $\sum_{n=1}^{\infty} nxe^{-nx^2}$ converges point-wise and not uniformly on [0.4], k > 0.
- 6. a) If A is a sub-set of IR. Then prove that the following statements are equivalent.
 - i) A is closed and bounded
 - ii) A is compact
 - iii) A is countably compact.
 - b) Prove that any infinite bounded subset of IR k has a limit point in Rk.
- 7. a) Let 'E' be an open subset of R^n and $f: E \to R^n$ be a differentiable function at $x_0 \in E$. Then prove that f is continuous at x_0 and $f'(x_0)$ is unique.
 - b) Let 'E' be an open subset of R^n and $f: E \to R^n$ be differentiable at a point $x_0 \in E$. Let F be an open subset of R^n containing E and $g: F \to R^k$ be differentiable at $f(x_0)$. If $\phi = g \circ f: E \to R^k$, then prove that ϕ is differentiable at $x_0 \in E$ and $\phi'(x_0) = g'(f(x_0)) \circ f'(x_0)$.
 - c) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping with $T = (T_1, T_2, \dots, T_m)$. Prove that 'T' is linear transformation if and only if $T_i (i = 1, 2, \dots, m)$ are linear transformations.
- 8. State and prove the inverse function theorem.

I Semester M.Sc. Examination, January 2017 (CBCS) MATHEMATICS M102T : Real Analysis

Time: 3 Hours

Max. Marks: 70

4

5

5

2

Instructions: 1) Answer any five questions.

2) All questions carry equal marks.

- 1. a) Evaluate $\int_{0}^{x} x d\{[x]\}$ where [x] is the maximum integer function.
 - b) If $f \in R[\alpha]$ on [a, b], then prove that $\int\limits_{\underline{a}}^{b} d\alpha = \int\limits_{a}^{\overline{b}} d\alpha = \int\limits_{a}^{b} f \, d\alpha = \lambda \left[\alpha(b) = \alpha(a)\right]$, where $\lambda \in [m, M]$.
 - c) If P* is a refinement of partition P of [a, b], then show that $L(P, f, \alpha) \le L(P^*, f, \alpha) \le U(P^*, f, \alpha) \le U(P, f, \alpha).$
 - 2. a) Assuming f(x) is monotonic on [a, b] and $\alpha(x)$ is monotonically increasing and continuous functions on [a, b], prove that $f \in R[\alpha]$ on [a, b].
 - b) If $f \in R[\alpha]$ on [a, b], $f \in [m, M]$ and ϕ is continuous function of f on [m, M] then prove that $\phi(f(x)) \in R[\alpha]$ on [a, b].
 - c) Evaluate $\int_{0}^{5} x^{2} d\{[x] x\}.$
 - 3. a) Consider the functions $\beta_1(x)$ and $\beta_2(x)$ defined as follows:

$$\beta_1(x) = \begin{cases} 0 & \text{when } x \le 0 \\ 1 & \text{when } x > 0 \end{cases}$$

$$\beta_2(x) = \begin{cases} 0 & \text{when } x < 0 \\ 1 & \text{when } x \ge 0 \end{cases}$$

verify whether $\beta_1(x) \in R\left[\beta_2(x)\right]$ on [-1, 1].

7 P.T.O.

b) State and prove fundamental theorem of integral calculus.

c) Calculate the total variation function of f(x) = x - [x] on [0, 2], where [x] is the minimum integral function.

a) Define uniform convergence of sequences and series of functions. State Weirstrauss M-test for uniform convergence for infinite series

b) Test for uniform convergence of the following:

i)
$$\left\{\frac{nx}{1+n^2x^2}\right\}$$
 for $x \in [0, 1]$.

 $\sum_{n=0}^{\infty} f_n(x)$ on [a, b].

- ii) $\left\{ nxe^{-nx^2} \right\}$ for any real x.
- iii) $\sum_{n=0}^{\infty} (1-x) x^n$ for $x \in [0, 1]$.

- b) Let $\{f_n(x)\}\$ be a sequence of functions uniformly convergent to f(x) on [a, b]and each $f_n(x) \in R$ (a, b]. Prove the following :
 - i) $f(x) \in R[a, b]$,

ii)
$$\int_{a}^{x} \frac{Lt}{n \to \infty} f_n(t) dt = \lim_{n \to \infty} \int_{a}^{x} f_n(t) dt$$
.

7

a) Define a k-cell in ${\rm I\!R}^{\rm K}$. Let ${\rm I}_1 \supset {\rm I}_2 \supset {\rm I}_3 \supset$ be a sequence of k-cells in ${\rm I\!R}^{\rm K}$.

Show that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

7

b) State and prove Heine-Borel theorem.

7

14

7. a) Let E ⊂ IRⁿ be an open set and f : E → IR^m is a map. Prove that if f is continuously differentiable if and only if the partial derivatives D_if_i exists and are continuous on E for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

-3-

b) If $T_1, T_2 \in L(\mathbb{R}^n, \mathbb{R}^m)$, then prove that

$$i) \quad \left\| \begin{array}{c} T_1 \\ \end{array} + T_2 \end{array} \right\| \leq \left\| \begin{array}{c} T_1 \\ \end{array} \right\| + \left\| \begin{array}{c} T_2 \\ \end{array} \right\|$$

ii) $\|\alpha T_1\| = |\alpha| \|T_1\|$.

c) Let $f:[a, b] \to \mathbb{R}^k$, $f = (f_1, f_2, ..., f_k)$, f is differentiable iff each f_i is differentiable.

8. State and prove the implicit function theorem.

First Semester M.Sc. Degree Examination, January/February 2018 (CBCS Scheme) MATHEMATICS

M 102 T : Real Analysis

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any five questions.

2) All questions carry equal marks.

- 1. a) Show that $x^2 \in R[x^2]$ on [0, 1].
 - b) If $f(x) \in R[\alpha(x)]$ on [a, b] then prove that $-f(x) \in R[\alpha(x)]$ on [a, b].
 - c) If $f(x) \in R[\alpha(x)]$ on [a, b] and $|f| \le M$, then prove that

$$\iint\limits_{a}f\mid d\alpha\leq M\left[\alpha(b)-\alpha(a)\right]. \tag{4+5+5}$$

- 2. a) If $f \in R[\alpha]$ on [a, b] and $c \in R^+$, then prove that $c \in R[\alpha]$ on [a, b].
 - b) If f(x) is continuous on [a, b], $\alpha(x)$ be monotonic on [a, b], then prove that $\int\limits_a^b f d\alpha = f(b) \, \alpha(b) f(a) \, \alpha(a) \alpha(\xi) \, [f(b) f(a)], \text{ where } \xi \in (a, b).$

c) If
$$f_1, f_2 \in R[\alpha]$$
 on [a, b] and $f_1 \le f_2$, then show that $\int_a^b f_1 d\alpha \le \int_a^b f_2 d\alpha$. (4+6+4)

3. a) Let f be Riemann integrable on [a, b] and let $F(x) = \int_{a}^{x} f(t) dt$, where $a \le x \le b$.

Then prove that F is continuous on [a, b]. Further, show that f(t) is continuous at a point x_0 on [a, b]. Then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

b) If $\lim_{\mu(p)\to 0} S(P, f, \alpha)$ exists, then show that $f \in R[\alpha]$ on [a, b] and

 $\lim_{\mu(p)\to 0} S(p, f, \alpha) = \int_{a}^{b} f d\alpha.$

- c) Given two functions f and g of bounded variation on [a, b]. Show that f + g and f.g are also of bounded variation. (7+4+3)
- 4. a) Let $\{f_n(x)\}$ be a sequence of functions converges to f(x) defined on [a,b] and $M_n = \sup_{x \in [a,b]} |f_n(x) f(x)|.$ Then prove that $\{f_n(x)\}$ converges to f(x) uniformly on [a,b] if and only if $M_n \to 0$ as $n \to \infty$.
 - b) Show that $\{e^{-nx}\}$ is uniformly convergent on [a, b].
 - c) For an infinite series of continuous functions $\sum_{n=1}^{\infty} f_n(x)$ that converges uniformly to f(x) on [a, b], show that f(x) is continuous on [a, b]. (6+4+4)
- 5. a) If $|f_n(x)| < M_n$, $\forall n \in \mathbb{N}$, $\forall x \in [a,b]$ and $\sum_{n=1}^{\infty} M_n$ of positive reals, is convergent,

then prove that $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on [a, b].

- b) Show that $\sum_{n=1}^{\infty} n \times e^{-nx^2}$ converges point-wise and not uniformly on [0, k], k > 0.
- c) Let $\sum_{n=0}^{\infty} f_n(x)$ be an infinite series of functions uniformly convergent to f(x) on [a,b] and each $f_n(x) \in R[a,b]$ then prove that $f(x) \in R[a,b]$. Also prove that

$$\int\limits_{a}^{x} \left\{ \sum_{n=1}^{\infty} f_{n}(t) \right\} dt = \sum_{n=k}^{\infty} \left\{ \int\limits_{a}^{x} f_{n}(t) \, dt \right\}.$$

(5+4+

- 6. a) State and prove the Hiene-Borel theorem.
 - b) Define a k-cell prove that every k-cell is compact.

(7+7)

7. a) Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and f is differentiable at a point $x \in E$. Then the partial derivatives $(D_i f_i)(x)$ exist, and

$$f'(x) e_j = \sum_{i=1}^m (D_j f_i)(x)(u_i), (1 \le j \le n).$$

- b) If $T \in L$ (\mathbb{R}^n , \mathbb{R}^m), then $||T|| < \infty$ and T is uniformly continuous mapping of \mathbb{R}^n onto \mathbb{R}^m .
- c) If \$\phi: X → X\$ is a contraction on a complete metric space X, then prove that
 \$\phi\$ has a unique fixed point.
- 8. State and prove the implicit function theorem.