

I Semester M.Sc. Degree Examination, Jan. 2016 (CBCS)

MATHEMATICS M101T : Algebra - I

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any 5 questions.

2) All questions carry equal marks.

1. a) Define:

- i) Symmetric group S_n.
- ii) Alternating group A_n.

Show that $S_n / A_n \simeq \{1,-1\}$.

- b) Show that $T: G \to G$ defined by $T(x) = x^{-1}$ is an automorphism if and only if G is abelian.
- c) Show that for every group is isomorphic to a subgroup of A(S) for some appropriate S. (5+4+5)
- 2. a) Let G be a finite group and S is a finite G-set. If $x \in S$ then show that $o(G_x) = o(G)/o(stab(x))$.
 - b) By using generator-relator form of S_3 . Verify the class equation of S_3 , where S_3 is a symmetric group.
 - c) If $o(G) = p^n$, where p is a prime number, prove that $Z(G) \neq \{e\}$, where 'e' is an identity of G. Deduce that every group of order p^2 is abelian. (4+4+6)
- 3. a) Show that the number of p-sylow subgroups of G, for a given prime, is congruent to 1 modulo p.
 - b) Let G be a group of order pq, where p and q are primes with p < q and $q \equiv 1 \pmod{p}$. Then show that G is non-abelian.
 - ✓ Show that every group of order 11².13² is abelian.

(6+4+4)

- 4. a) Define a simple group. Show that a group of order 28 is solvable but not simple.
 - ⋆) State and prove the Jordan-Hölder theorem.

(4+10)

P.T.O.

PG-142

- 5. a) If U is an ideal of a ring R, let $[R:U] = \{x \in R : r \in X \in U \ \forall \ r \in R\}$. Prove that [R:U] is an ideal of R containing U.
 - ✓b) Show that the homomorphism ϕ of R onto R' is an isomorphic if and only if Ker $\phi = \{0\}$.
 - c) State and prove the fundamental theorem of homomorphism for rings. (4+4+6)
- 6. a) Show that a ring ZZ of integers is a principle ideal ring.
 - Define a maximal ideal of a ring R. If R is a commutative ring with unity and M is an ideal of R, then show that M is a maximal ideal of R if and only if R is a field.
- Show that the quotient field is the smallest field containing D, where D is an integral domain. (4+6+4)
- 7. a) Define an euclidean ring. Let x = a + ib, y = c + id be any two elements in $z[i] \{0\}$. then prove that it is an euclidean ring.
 - b) Let R be an euclidean ring. Show that any ideal $A = (a_0)$ is maximal ideal in R if and only if a_0 is a prime element of R.
 - C) If p is a prime number of the form 4n + 1, then show that $x^2 \equiv -1 \pmod{p}$. (5+5+4)
- 8. a) Prove that deg (fg) = deg (f) + deg (g) for f, g ∈ R[x].
 Further, if R is an integral domain, then show that R[x] is also an integral domain.
 - b) State and prove the Euclid's algorithm for polynomials over a field.
 - c) Let $A = (x^2 + x + 1)$ be an ideal generated by $x^2 + x + 1 \in Z_2[x]$. Verify that A is a maximal ideal in $Z_2[x]$. (5+5+4)

I Semester M.Sc. Degree Examination, January 2017 (CBCS)

Mathematics M101T : ALGEBRA - I

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any 5 questions.

2) All questions carry equal marks.

- 1. a) Let $\phi: G \to G'$ be a homomorphism with Kernel K and let \overline{N} be a normal subgroup of \overline{G} and $N = \{g \in G : \phi(g) \in \overline{N}\}$. Prove that $G \mid N \cong \overline{G} \mid \overline{N}$.
 - b) Prove that I(G) ≅ G / Z(G), where I (G) is a group of inner automorphisms of G and Z (G) is the centre of G.
 - c) Compute the group Aut (K₄), where K₄ is the Klein's 4-group. Hence illustrate that the automorphism group of an abelian group need not be abelian. (5+4+5)
- 2. a) State and prove the Cauchy-Frobenius Lemma.
- b) Derive the class equation for finite groups.
 - c) Prove that every group of order p2, for a prime p is abelian. (5+5+4
- 3. a) Show that all p-sylow subgroups of a finite group are conjugate to each other.
 - b) Show that the number of p-sylow subgroup of n_p of G is of the form $n_p \equiv 1$ (modp).
 - c) Show that every group of order 15 is cyclic.

(6+6+2)

- 4. a) Show that a normal subgroup N of G is maximal if and only if the quotient group G N is simple.
 - b) If a group G has a composition series, then show that all its composition series are pairwise equivalent.
 - c) Define a solvable group. Show that symmetric group S₄ is solvable, but not (5+6+3) simple.

PG - 381

ubr

- 5. a) Define integral domain and a field P. Prove that every finite integral domain is a field.
 - b) Let R be a commutative ring with unity whose ideals are {0} and R only. Prove that R is a field that R is a field.
 - c) Let U be the left ideal of a ring R and $\lambda(U) = \{x \in R : xu = 0 \text{ for all } u \in U\}$. Prove (6+4+4)that $\lambda(U)$ is an ideal of R.
- 6. a) Define principal ideal of a ring R. Show that the ring Z of all integers is a principal ideal ring.
 - b) Let R be an integral domain with ideal P. Show that P is a principal ideal of R if and only if R p is an integral domain
- (c) Show that any two isomorphic integral domains have isomorphic quotient (4+5+5)fields. 364
- 7. (a) Show that every field is an Euclidean ring. P. 312
 - b) Let R be an Euclidean ring and a, b ∈ R be non-zero with 'b' non-unit. Then prove that d (a) < d (ab).
 - c) If p is a prime number of the form 4n + 1, prove that $p = a^2 + b^2$ for some (4+4+6)integers 'a' and 'b'.
- 8. a) If F is a field, then show that F [x] is not a field.
 - b) State and prove Eisenstein criterion for irreducibility of a polynomial.
 - c) Let A = $(x^2 + x + 1)$ be an ideal generated by $x^2 + x + 1 \in Z_2[x]$. Verify that (4+5+5)A is a maximal ideal in z₂ [x].

I Semester M.Sc. Degree Examination, January/February 2018

(CBCS Scheme) MATHEMATICS M101T : Algebra – I

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any 5 questions.

2) All questions carry equal marks.

1. a) Let $\phi: G \to \overline{G}$ be an epimorphism with Kernel K and let N be a normal subgroup

of G. Then prove that
$$\frac{G/K}{N/K} \approx G/N$$
.

- b) Show that T: G → G defined by T(x) = x⁻¹ is an automorphism if and only if G is abelian.
- c) State and prove the Cayley's theorem for finite groups.

(5+4+5)

- 2. a) State and prove the orbit-stabilizer theorem.
 - b) Derive the class equation for finite groups.
 - c) Define a p-group. If G is a finite group of prime power order. Prove that G has a non-trivial center. (5+5+4)
- 3. a) State and prove the Sylow first theorem.
 - b) Let Q(G) = pq, where p and q are distinct primes with p < q and $q \not\equiv 1 \pmod{p}$.

 Then prove that G is abelian and cyclic.

 (8+6)
- 4. a) Define a solvable group. Prove that every subgroup of a solvable group is solvable.
 - b) State and prove the Jordan-Holder theorem.

c) Show that symmetric group S₄ is solvable, but not solvable.

(4+7+3)

p.T.O.

PG - 250

- 5. a) If R is a ring with unity in which (0) and R are the only two left ideals, then prove that R is a divison ring.
 - b) If U is an ideal of a ring R, let [R : U] = {x∈R : rx∈U ∀ r∈R}. Prove that [R : U] is an ideal of R containing U.
 - c) Let R and R' be rings and ϕ is a homomorphism of R onto R' with Kernel U.

 Then show that R' = R_U.

 (5+4+5)
- a) Define a principal ideal and principal ideal ring. Prove that every field is a principal ideal ring.
 - b) Define maximal ideal of a ring. If R is a commutative ring with unit element and M is an ideal of R, then show that M is a maximal ideal of R if and only if RM is a field.
 - c) Prove that in a principal ideal ring, every non-zero prime ideal is maximal ideal. (5+6+3)
- 7. a) Define an euclidean ring. Let x = a + ib, y = c + id be any two elements in $Z[i] \{0\}$ then prove that it is an euclidean ring.
 - b) Show that every Euclidean ring is a principle ideal ring.
 - c) State and prove the unique factorization theorem.

(5+4+5)

- a) Prove that deg(fg) = deg(f) + deg(g) for f, G ∈ R[x]. Further, if R is an integral domain, then show that R[x] is also an integral domain.
 - b) Show that the product of two primitive polynomials is a primitive polynomial.
 - c) Verify that $f(x) = x^3 + x^2 2x 1 \in Q[x]$ is irreducible polynomial, by using (5+5+4)