I Semester M.Sc. Examination, January 2015 (Y2K11 (RNS) Scheme) **MATHEMATICS** M103 : Topology - I

Time: 3 Hours

Instructions: 1) Answer any five full questions choosing atleast two from each Part. 2) All questions carry equal marks.

PART-A

1.	a)	Define an infinite set. Prove that every super set of an infinite set is infinite.	8
	b)	Let X be an infinite set, and $x_0 \in X$ then prove that $X - \{x_0\}$ is an infinite set.	8
2.	a)	Prove that the open interval (0, 1) of reals is non-denumerable set.	8
	b)	State and prove Cantor's theorem.	8
3.	a)	Define a metric on a nonempty set X. If d is a metric on X, then prove that	
		$e(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X \text{ is a metric on } X.$	8
	b)	Prove that a subspace of a complete metric is complete iff it is closed.	8
4.	a)	State and prove contraction mapping theorem.	6
	b)	State and prove Baire's category theorem.	10
		PART – B	
5.	a)	Define a topology on a non-empty set. Prove that the intersection of two topologies is again a topology.	5
	b)	Is the union of two topologies a topology ? Justify.	3
	c)	Prove that every metric space is a topological space.	8

PG – 967

Max. Marks: 80

6. a) Prove the following hold in $[x, \Im]$. 6 i) $\alpha(\phi) = \phi$ ii) $A \subseteq B$ implies $d(A) \subseteq d(B)$ ii) $d(A \cup B) = d(A) \cup d(B)$ b) If $A \subseteq (X, \mathfrak{J}]$, then prove that $A \cup d(A)$ is closed. 4 c) Prove that a point x belongs to the closure of a set A iff every open set G which contains x has a nonempty intersection with A. 6 7. a) Prove the following : i) $A^{\circ} \subseteq A$ ii) A is open iff $A = A^{\circ}$ iii) $A \subseteq B \Rightarrow A^{\circ} \subset B^{\circ}$ iv) $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$ 8 b) Let $(Y, \mathfrak{T}^*) \subseteq (X, \mathfrak{T})$ and $E \subseteq Y \subseteq X$, then prove the following i) $\overline{E}_v = \overline{E} \cap Y$ ii) $E^{\circ} = E^{\circ}{}_{Y} \cap_{Y}^{\circ}$ iii) $b_{\vee}(E) \subseteq b(E) \cap Y$ 8 8. a) Prove that a mapping $f: X \rightarrow Y$ is continuous iff inverses of open sets are open. 8 b) Prove that a bijective function $f: X \rightarrow Y$ is a homeomorphism iff $f(A^{\circ}) = f(A)^{\circ} \quad \forall A \subset X.$ 8

PG - 967