Max. Marks: 80

First Semester M.Sc. Degree Examination, January 2015 (Y2K – 11 (RNS) Scheme) MATHEMATICS M – 102 : Real Analysis

Time : 3 Hours

Instructions: 1) Answer any five questions choosing atleast one from each Part.
2) All questions carry equal marks.

PART-A

1.	a)	Show that f (x) = $-x^2$ belongs to R [o, c].	4
	b)	Prove that $f \in R[\alpha]$ on [a, b] if and only if given $\in > 0$, there exists a partition P of [a, b] such that : U (P, f, α) – L (P, f, α) < \in .	6
	c)	If $f \in \mathbb{R} [\alpha]$ on [a, b] and $\mathbb{C} \in \mathbb{R}^+$, then prove that $\mathbb{C} f \in \mathbb{R} [\alpha]$ on [a, b].	6
2.	a)	If f is continuous on [a,b] and α is monotonically increasing function on [a,b], show that $f \in R[\alpha]$.	6
	b)	If f (x) is continuous on [a, b] α (x) be monotonic on [a, b] prove that	
		$\int_{a}^{b} f d\alpha = f(b) \alpha (b) - f(a) \alpha (a) - \alpha (\xi) [f(b) - f(a)] \text{ where } \xi \in (a,b).$	6
	c)	If $f_1, f_2 \in \mathbb{R}[\alpha]$ on [a,b] and $f_1 \leq f_2$ then show that $\int_a^b f_1 d \alpha \leq \int_a^b f_2 d \alpha$.	4
3.	a)	If $f \in R$ [a, b] and if F (x) = $\int_a^x f(t) dt$ where $a \le x \le b$ then prove that F is	
		continuous on [a, b]. Further prove that if f (t) is continuous at a point x_0 in [a,b], then F is differentiable at x_0 and $F^1(x_0) = f(x_0)$.	8
	b)	If $\lim_{\mu(p)\to 0} S(P, f, \alpha)$ exists then prove that $f \in R[\alpha]$ on [a, b] and that $\lim_{\mu(p)\to 0} It$	
		S (P, f, α) = $\int_{a}^{b} f dx$.	3
	c)	Define a function of bounded variation. Prove that a function of bounded variation on [a, b] is bounded.	5

9.T.O.

PG - 966

PART-B

- 4. a) Lef { $f_n(x)$ } be a sequence of functions converges to f(x) defined on [a, b] and $M_n = \sup_{x \in [a,b]} |f_n(x) - f(x)|$ then prove that { $f_n(x)$ } converges to f (x) uniformly on [a, b] if and only if $M_n \to 0$ as $n \to \infty$.
 - b) Show that {tan ⁻¹(n x)} is uniformly convergent on [a, b], a # 0 but not uniformly convergent on [0, b].
 - c) Suppose $f_n \rightarrow f$ uniformly on [a, b] and if $x_0 \in [a, b]$ such that $\lim_{x \rightarrow x_0} f_n(x) = A_n$, n = 1, 2, 3, ... Then prove that
 - i) A_n converges
 - ii) $\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x) \cdot$
- 5. a) If $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent to f(x) on [a, b] and each $f_n(x) \in \mathbb{R}[\alpha]$ on [a,b], then prove that $f(x) \in \mathbb{R}[\alpha]$ on [a, b].
 - b) Let $\{f_n(x)\}\$ be a sequence of differentiable functions such that the sequence converges for atleast one point $t \in [a,b]$. If the sequence of the derivatives of $f_n(x)$, that is $\{f_n^1(x)\}\$ is uniformly convergent to F (x) on [a, b], then prove that $[f_n(x)\}\$ is uniformly convergent to f (x) on [a, b] and that $f^1(x) = F(x) \forall x \in [a,b]$.
- 6. a) If A is a subset of IR^k, then prove that the following statement are equivalent :
 - i) A is closed and bounded
 - ii) A is compact
 - iii) A is countably compact.
 - b) State and prove Stone Weierstrass theorem.

4

6

6

8

8

8

8

ı	 	 	
I			
I			

4

16

PART-C

- 7. a) Let E be an open subset of \mathbb{IR}^n and $f: E \to \mathbb{IR}^m$ be a differentiable function at $x_0 \in E$. Then prove that f is continuous at x_0 and $f^1(x_0)$ is unique. 6
 - b) If $T_1, T_2 \in L$ (IRⁿ, IR^m), then prove that
 - i) $\|T_1 + T_2\| \le \|T_1\| + \|T_2\|$.
 - ii) $\|\alpha T_1\| = |\alpha| \|T_1\|$.
 - c) If $\phi : X \to X$ is a contraction on a complete metric space X, then prove that ϕ has a unique fixed point. 6
- 8. State and prove the implicit function theorem.

BMS

BMSCW