First Semester M.Sc. Degree Examination, January 2015 (Y2K - 11 (RNS) Scheme)
 MATHEMATICS
 M-102 : Real Analysis

Time : 3 Hours
Max. Marks : 80
Instructions: 1) Answer any five questions choosing atleastone from each
2) All questions carry equal marks.
PART - A

1. a) Show that $f(x)=-x^{2}$ belongs to $R[o, c]$.
b) Prove that $f \in R[\alpha]$ on $[a, b]$ if and only if given $\in>0$, there exists a partition P of $[a, b]$ such that: $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
c) If $f \in R[\alpha]$ on $[a, b]$ and $C \in \mathbb{R}^{+}$, then prove that $C f \in R[\alpha]$ on $[a, b]$.
2. a) If f is continuous on $[a, b]$ and α is monotonically increasing function on $[a, b]$, show that $f \in R[\alpha]$.

6
b) If $f(x)$ is continuous on $[a, b] \alpha(x)$ be monotonic on $[a, b]$ prove that
$\int_{a}^{b} f d \alpha=f(b) \alpha(b)-f(a) \alpha(a)-\alpha(\xi)[f(b)-f(a)]$ where $\xi \in(a, b)$.
c) If $f_{1}, f_{2} \in R[\alpha]$ on $[a, b]$ and $f_{1} \leq f_{2}$ then show that $\int_{a}^{b} f_{1} d \alpha \leq \int_{a}^{b} f_{2} d \alpha$.
3. a) If $f \in R[a, b]$ and if $F(x)=\int_{a}^{x} f(t)$ dt where $a \leq x \leq b$ then prove that F is continuous on $[a, b]$. Further prove that if $f(t)$ is continuous at a point x_{0} in $[a, b]$, then F is differentiable at x_{0} and $F^{1}\left(x_{0}\right)=f\left(x_{0}\right)$.
b) If $\underset{\mu(p) \rightarrow 0}{\mathrm{lt}} \mathrm{S}(\mathrm{P}, \mathrm{f}, \alpha)$ exists then prove that $\mathrm{f} \in \mathrm{R}[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$ and that $\underset{\mu(\mathrm{p}) \rightarrow 0}{\mathrm{lt}}$ $S(P, f, \alpha)=\int_{a}^{b} f d x$.
c) Define a function of bounded variation. Prove that a function of bounded variation on $[\mathrm{a}, \mathrm{b}]$ is bounded.

PART-B
4. a) $\operatorname{Lef}\left\{f_{n}(x)\right\}$ be a sequence of functions converges to $f(x)$ defined on $[a, b]$ and $M_{n}=\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|$ then prove that $\left\{f_{n}(x)\right\}$ converges to $f(x)$ uniformly on [a, b] if and only if $\mathrm{M}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.
b) Show that $\left\{\tan ^{-1}(\mathrm{nx})\right\}$ is uniformly convergent on $[\mathrm{a}, \mathrm{b}]$, $\mathrm{a} \# 0$ but not uniformly convergent on $[0, b]$.
c) Suppose $f_{n} \rightarrow f$ uniformly on $[a, b]$ and if $x_{0} \in[a, b]$ such that $\lim _{x \rightarrow x_{0}} f_{n}(x)=A_{n}$, $\mathrm{n}=1,2,3, \ldots$ Then prove that
i) A_{n} converges
ii) $\underset{x \rightarrow x_{0}}{ } \operatorname{lt}_{n \rightarrow \infty} f_{n}(x)=\underset{n \rightarrow \infty}{\operatorname{lt}} \operatorname{lt}_{x \rightarrow x_{0}} f_{n}(x)$.
5. a) If $\sum_{n=1}^{\infty} f_{n}(x)$ is uniformly convergent to $f(x)$ on $[a, b]$ and each $f_{n}(x) \in R[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$, then prove that $\mathrm{f}(\mathrm{x}) \in \mathrm{R}[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$.
b) Let $\left\{f_{n}(x)\right\}$ be a sequence of differentiable functions such that the sequence converges for atleast one point $t \in[a, b]$. If the sequence of the derivatives of $f_{n}(x)$, that is $\left\{f_{n}^{1}(x)\right\}$ is uniformly convergent to $F(x)$ on $[a, b]$, then prove that $\left[f_{n}(x)\right\}$ is uniformly convergent to $f(x)$ on $[a, b]$ and that $f^{1}(x)=F(x) \forall x \in$ [a,b].
6. a) If A is a subset of \mathbb{R}^{k}, then prove that the following statement are equivalent:
i) A is closed and bounded
ii) A is compact
iii) A is countably compact.
b) State and prove Stone Weierstrass theorem.

PART-C

7. a) Let E be an open subset of \mathbb{R}^{n} and $f: E \rightarrow \mathbb{R}^{m}$ be a differentiable function at $x_{0} \in E$. Then prove that f is continuous at x_{0} and $f^{1}\left(x_{0}\right)$ is unique.
b) If $T_{1}, T_{2} \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, then prove that
i) $\left\|T_{1}+T_{2}\right\| \leq\left\|T_{1}\right\|+\left\|T_{2}\right\|$.
ii) $\left\|\alpha T_{1}\right\|=|\alpha|\left\|T_{1}\right\|$.
c) If $\phi: X \rightarrow X$ is a contraction on a complete metric space X, then prove that ϕ has a unique fixed point.
8. State and prove the implicit function theorem.

