I Semester M.Sc. Degree Examination, January 2015 (CBCS Scheme)
 MATHEMATICS M-102T : Real Analysis

Time : 3 Hours
Max. Marks : 70

Instructions : 1) Answerany five questions.
2) All questions carry equal marks.

1. a) Show that $f(x)=-x \in R[-c, 0]$.
b) If $f(x) \in R[\alpha(x)]$ on $[a, b]$ then prove that $-f(x) \in R[\alpha(x)]$ on $[a, b]$.
c) If $f(x) \in R[\alpha(x)]$ on $[a, b]$ and $|f| \leq M$, then prove that

$$
\begin{equation*}
\int_{a}^{b}|f| d \alpha \leq M[\alpha(b)-\alpha(a)] \tag{5}
\end{equation*}
$$

2. a) If $f \in R[\alpha]$ on $[a, b]$ and $C \in R^{+}$, then prove that $\mathrm{Cf} \in[\alpha]$ on $[a, b]$.
b) If f is continuous on $[\mathrm{a}, \mathrm{b}]$ and α is monotonically increasing function on $[\mathrm{a}, \mathrm{b}]$, show that $f \in R[\alpha]$.
c) Let f be Riemann integrable on $[a, b]$ and let $F(x)=\int_{a}^{x} f(t) d t$, where $a \leq x \leq b$. Then prove that F is continuous on $[a, b]$. Further, show that if $f(t)$ is continuous at a point x_{0} on $[a, b]$, then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
3. a) Consider two functions $\beta_{1}(x)$ and $\beta_{2}(x)$ defined as follows:
$\beta_{1}(x)= \begin{cases}0 & \text { when } x \leq 0 \\ 1 & \text { when } x>0\end{cases}$
$\beta_{2}(x)= \begin{cases}0 & \text { when } x<0 \\ 1 & \text { when } x \geq 0\end{cases}$

Verify whether $\beta_{1}(x) \in R\left[\beta_{2}(x)\right]$ on $[-1,1]$.
b) If $\lim _{\mu(P) \rightarrow 0} S(P, f, \alpha)$ exists, then show that $f \in R[\alpha]$ on $[a, b]$ and

$$
\lim _{\mu(p) \rightarrow 0} S(p, f, \alpha)=\int_{a}^{b} f d \alpha .
$$

c) Calculate the total variation functions of $f(x)=x-[x]$ on $[0,2]$ where $[x]$ is the maximum integral function.
4. a) State and prove Weier strauss M-test.
b) Test for uniform convergence for $\left\{\frac{n x}{1+n^{2} x^{2}}\right\}$ on $[0,1]$.
c) Suppose $f_{n} \rightarrow f$ uniformly on [a, b] and if $x_{0} \in[a, b]$ such that $\lim _{x \rightarrow x_{0}} f_{n}(x)=A_{n}, n=1,2,3 \ldots$ then prove that
i) A_{n} converges
ii) $\lim _{x \rightarrow x_{0}}$ It $f_{n \rightarrow \infty}(x)=$ It $\lim _{n \rightarrow \infty} f_{n \rightarrow x_{0}}(x)$.
5. a) If $\left|f_{n}(x)\right|<M_{n}, \forall n \in N, \forall x \in[a, b]$ and $\sum_{n=1}^{\infty} M_{n}$ of positive reals, is convergent, then prove that $\sum_{n=1}^{\infty} f_{n}(x)$ is uniformly convergent on $[a, b]$.
b) Show that $\sum_{n=1}^{\infty} n x e^{-n x^{2}}$ converges point-wise and not uniformly on $[0,4] k>0$.
c) Let $\sum_{n=0}^{\infty} f_{n}(x)$ be an infinite series of functions uniformly convergent to $f(x)$ on $[a, b]$ and each $f_{n}(x) \in R[a, b]$ then prove that $f(x) \in R[a, b]$. Also prove that

$$
\int_{a}^{x}\left\{\sum_{n=1}^{\infty} f_{n}(t)\right\} d t=\sum_{n=k}^{\infty}\left\{\int_{a}^{x} f_{n}(t) d t\right\} .
$$

6. a) State and prove Stone-Weierstrass theorem.
b) Define a k-cell in R^{k} prove that every k-cell is compact in R^{k}.
7. a) Let $E \subset \mathbb{R}^{n}$ be an open set and $f: E \rightarrow R^{m}$ is a map. Prove that if f is continuously differentiable if and only if the partial derivatives $D_{j} f_{i}$ exists and are continuous on E for $1 \leq i \leq m, 1 \leq j \leq n$
b) Let E be an open subset of \mathbb{R}^{n} and $f . E \rightarrow \mathbb{R}^{m}$ be a differentiable function at $x_{0} \in E$. Then prove that f is continuous at x_{0} and $f^{\prime}\left(x_{0}\right)$ is unique.
c) Discuss the continuity of the function $f(x, y)=\left\{\begin{array}{ccc}\frac{x y}{x^{2}+y^{2}}, & x \neq 0 & y \neq 0 \\ 0 & x=0 & y=0\end{array}\right.$.
8. State and prove the implicit function theorem.
