First Semester M.Sc. Examination, January 2015
 (Y2K11 (RNS) Scheme)
 MATHEMATICS
 M 101 : Algebra - I

Time: 3 Hours
Max. Marks : 80

> Instructions : 1) Answer any 5 questions, choosing atleast 2 from each Part.
> 2) All questions carry equal marks.

PART-A

> 1. a) Define permutation on a set. Show that every permutation on a finite set is a product of disjoint cycles.
b) Let $\phi: G \rightarrow \bar{G}$ be an epimorphism with kernel K and let N be a normal subgroup of G. Then prove that $\frac{G / K}{N / K} \approx G / N$.
c) Show that every group is isomorphic to a subgroup of A (S), for some appropriate S .
2. a) State and prove the orbit-stabilizer theorem. 5
b) Derive the class equation for finite groups.
c) By using the generator-relator form of D_{8}; find the conjugacy class of all the elements of the dehydral group D_{8}.
3. a) State and prove the Cauchy's theorem for abelian groups. 6
b) Show that any two p-sylow subgroups are conjugate to each other. 6
c) Let $o(G)=p q$, where p and q are distinct primes with $p<q$ and $q \neq 1(\bmod p)$. Then prove that G is cyclic. 4
4. a) Define a solvable group. Prove that every subgroup of a solvable group is solvable. 6
b) Show that a normal subgroup N of G is maximal if and only if the quotient group G / N is simple. 6
c) Show that the symmetric group S_{3} is not simple. 4

PART-B

5. a) Define integral domain and field. Prove that every finite integral domain is a
field.

6
b) If U is an ideal of a ring R, let $[R: U]=\{x \in R: r x \in U \forall r \in R\}$. Prove that [$R: U]$ is an ideal of R containing U.

5
c) Show that a homomorphism ϕ of a ring R onto a ring R^{\prime} is an isomorphism if and only if $\operatorname{ker} \phi=\{0\}$.

5

6. a) Show that a ring \mathbb{Z} of integers is a principle ideal ring.
b) Define maximal ideal of a ring. If R is a commutative ring with unit element and M is an ideal of R, then show that M is a maximal ideal of R if and only if R / M is a field.
c) Prove that in a principal ideal ring, every non-zero prime ideal is maximal ideal.
7. a) Define field of quotients of an integral domain D. Show that any two isomorphic integral domains have isomorphic quotient fields.
b) Let R be a euclidean ring. Then show that any two elements a and b in R have a gcd ' d '. More over $d=\lambda a+\mu b$ for some $\lambda, \mu \in R$.
c) If p is a prime number of the form $4 n+1$, prove that $p=a^{2}+b^{2}$ for some integers a, b.
8. a) Define an irreducible polynomial in $F[X]$. Explain by an example that an ideal generated by an irreducible polynomial in $F[X]$ is a maximal ideal in $F[X]$.
b) State and prove Einstein criterion for irreducibility of a polynomial.
c) If p is a prime number, prove that the polynomial $x^{n}-p$ is irreducible over Q.
