\sim

First Semester M.Sc. Examination, January 2015 (Y2K11 (RNS) Scheme) MATHEMATICS M 101 : Algebra – I

Time : 3 Hours

Instructions : 1) Answer any 5 questions, choosing atleast 2 from each Part. 2) All questions carry equal marks.

PART-A

1.	a)	Define permutation on a set. Show that every permutation on a finite set is a product of disjoint cycles.	5
	b)	Let $\varphi:G\to\overline{G}$ be an epimorphism with kernel K and let N be a normal subgroup	
		of G. Then prove that $\frac{G}{K} \approx G_{N}$.	5
	c)	Show that every group is isomorphic to a subgroup of A (S), for some appropriate S.	6
2.	a)	State and prove the orbit-stabilizer theorem.	5
	b)	Derive the class equation for finite groups.	6
	c)	By using the generator-relator form of D_8 ; find the conjugacy class of all the elements of the dehydral group D_8 .	5
3.	a)	State and prove the Cauchy's theorem for abelian groups.	6
	b)	Show that any two p-sylow subgroups are conjugate to each other.	6
	c)	Let $o(G) = pq$, where p and q are distinct primes with $p < q$ and $q \neq 1 \pmod{p}$. Then prove that G is cyclic.	4
4.	a)	Define a solvable group. Prove that every subgroup of a solvable group is solvable.	6
	b)	Show that a normal subgroup N of G is maximal if and only if the quotient group G_N is simple.	6
	c)	Show that the symmetric group S_3 is not simple.	4
			~

Max. Marks: 80

P.T.O.

PG – 965

PART-B

5.	a)	Define integral domain and field. Prove that every finite integral domain is a field.	6
	b)	If U is an ideal of a ring R, let [R : U] = $\{x \in R : r \ x \in U \ \forall \ r \in R\}$. Prove that [R : U] is an ideal of R containing U.	5
	c)	Show that a homomorphism ϕ of a ring R onto a ring R' is an isomorphism if and only if ker $\phi = \{0\}$.	5
6.	a)	Show that a ring \mathbb{Z} of integers is a principle ideal ring.	4
	b)	Define maximal ideal of a ring. If R is a commutative ring with unit element and M is an ideal of R, then show that M is a maximal ideal of R if and only if $\frac{R}{M}$ is a field.	6
	c)	Prove that in a principal ideal ring, every non-zero prime ideal is maximal ideal.	6
7.	a)	Define field of quotients of an integral domain D. Show that any two isomorphic integral domains have isomorphic quotient fields.	6
	b)	Let R be a euclidean ring. Then show that any two elements a and b in R have a gcd 'd'. More over $d = \lambda a + \mu b$ for some λ , $\mu \in R$.	4
	c)	If p is a prime number of the form $4n+1$, prove that $p = a^2 + b^2$ for some integers a, b.	6
8.	a)	Define an irreducible polynomial in $F[X]$. Explain by an example that an ideal generated by an irreducible polynomial in $F[X]$ is a maximal ideal in $F[X]$.	6
	b)	State and prove Einstein criterion for irreducibility of a polynomial.	6
	c)	If p is a prime number, prove that the polynomial $x^n - p$ is irreducible over Q.	4