M101T : Algebra – I Time : 3 Hours Max. Marks: 70 Instructions: 1) Answer any 5 questions. 2) All questions carry equal marks.

(CBCS Scheme) MATHEMATICS

of G. Then prove that $\frac{G}{N_{V}} \approx G_{N}$.

1. a) Let $\phi: G \to \overline{G}$ be an epimorphism with Kernel K and let N be a normal subgroup

b) Let G be an abelian group with $a \in G$ such that $a^2 \neq e$. Prove that there is an automorphism of G different from I. c) State and prove the Cayley's theorem for permutation groups. 2. a) State and prove the orbit stabilizer theorem.

- b) If G is a finite group, then show that $o(G) = o(Z(G)) + \sum_{N(a)\neq G} \frac{o(G)}{o(N(a))}$. 5
- c) Prove that every group of prime order has non trivial centre.
- 3. a) If A and B are two subgroups of a finite group G, then prove that

o (A x B) =
$$\frac{o(A)o(B)}{o(A \cap xBx^{-1})}$$
, where A x B = {a x b/a \in A, b \in B}. Hence show

that all p-sylow sub groups of a finite group are conjugate to each other.

- b) Show that a group of order pq with p and q are distinct primes such that p < qand $q \neq (mod p)$ is abelian.
- 4. a) Show that the symmetric group S_3 is not simple.
 - b) Define a solvable group. Give an example of a non-abelian solvable group. 3
 - c) State and prove the Jordan-Hölder theorem.

I Semester M.Sc. Degree Examination, January 2015

PG – 606

5

4

5

5

4

8

6

3

8

5.	a)	Let R be a commutative ring with unity whose only ideals are {o} and R itself. Then prove that R is a field.	5
	b)	Let U be a left ideal of a ring R and $\lambda(U) = \{x \in R \mid xu = 0 \forall u \in U\}$. Then prove that $\lambda(U)$ is an ideal of R.	4
	c)	Let R and R' be rings and ϕ is a homomorphism of R onto R' with Kernel U. Then show that $R' \approx \frac{R}{U}$.	5
6.	a)	Define a principle ideal ring. Show that a ring Z of integers is a principle ideal ring.	4
	b)	Prove that an ideal of the ring Z of integers is maximal if and only if it is generated by some prime integer in Z.	5
	c)	Show that any two isomorphic integral domains have isomorphic quotient fields.	5
7.	a)	Define Euclidean ring. Prove that the ring Z [i] of Gaussian integers is an Euclidean ring.	4
	b)	Show that every Euclidean ring is a principle ideal ring.	4
	c)	State and prove the Unique factorization theorem.	6
8.	a)	Show that the product of two primitive polynomials is a primitive polynomial.	5
	b)	State and prove the Gauss lemma.	5
	c)	Using Eisenstein Criteria, verify that the polynomial $x^3 - 3x - 1$ over Q is irreducible.	4

PG - 606