First Semester M.Sc. Degree Examination, Jan./Feb. 2014 (Semester Scheme) (N.S.) MATHEMATICS M – 102 : Real Analysis

Time: 3 Hours

Instructions: 1) Answer any five full questions choosing atleast one from each Part. 2) All questions carry equal marks.

- 1. a) Show that $f(x) = -x \in R[-C,o]$. 4 b) If $f \in R[\alpha]$ on [a, b], then prove that $-f \in R[\alpha]$ on [a, b]. 6 c) If $f \in R[\alpha]$ on [a, b], then prove that b h $\int f d\alpha = \int f d\alpha = \int f d\alpha = \lambda [\alpha(b) - \alpha(a)], \text{ where } \lambda \in [m, M].$ 6 а а а 2. a) If f is continuous on [a, b] and α is monotonically increasing function on [a, b], show that $f \in R[\alpha]$.
 - b) If f(x) is continuous on [a, b] and α is monotonic on [a, b], prove that

$$\int_{a}^{b} f d\alpha = f(b)\alpha(b) - f(a)\alpha(a) - \alpha(\xi)[f(b) - f(a)]$$
Where $\xi \in (a,b)$.

(a) Evaluate:
$$\int_{0}^{5} x^{2} d\{[x] - x\}.$$
(4)

Max. Marks: 80

PG – 376

6

PG – 376

8

4

6

4

3. a) Consider two functions $\beta_1(x)$ and $\beta_2(x)$ as follows :

$$\beta_1(x) = \begin{cases} 0, & \text{when } x \le 0 \\ 1, & \text{when } x > 0, \end{cases}$$

 $\beta_2(x) = \begin{cases} 0, & \text{when } x < 0 \\ 1, & \text{when } x \ge 0 \end{cases}$

Verify, whether $\beta_1(x) \in R[\beta_2(x)]$ on [-1, 1].

- b) State and prove fundamental theorem of integral calculus.
- c) Given two functions f and g of bounded variation on [a, b], show that f + g and f.g are also bounded variation.4

4. a) If $\{f_n(x)\}\$ is a sequence of functions defined on [a, b], then prove that $\{f_n(x)\}\$ converges uniformly on [a, b] iff $\in >0$, 7m, $P \in N/$ for a given

$$\left|f_{n+P}(x)-f_{n}(x)\right| < \in, \forall n \ge m, P \ge 1, \forall x \in [a, b].$$

- b) Show that $\{\tan^{-1}(nx)\}$ is uniformly convergent on [a, b].
- c) Suppose $f_{n \rightarrow 7}$ uniformly on [a, b] and if $x_{0} \in [a, b]$ such that lim $f_{n}(x) = A_{n}$, n = 1, 2, 3,..... $x \rightarrow x_{0}$

Then prove that

i) A_n converges

ii)
$$\lim_{x \to x_0} \lim_{n \to \infty} \frac{\text{lt}}{f_n(x)} = \lim_{n \to \infty} \frac{\text{lt}}{x \to x_0} \frac{\text{lt}}{f_n(x)}.$$
 6

- 5. a) Let $\{f_n(x)\}$ be a sequence of differentiable functions on [a, b] and let it converge for some point $x_0 \in [a, b]$. If the sequence $\{f_n^{-1}(x)\}$ is uniformly convergent to F(x) on [a, b], then prove that $\{f_n(x)\}$ is uniformly convergent to f(x) on [a, b]. Also prove that $f^1(x) = F(x), \forall x \in [a, b]$. **10**
 - b) Let {f_n(x)} be a sequence of functions uniformly convergent to f(x) on [a, b] and each f_n(x)∈ R[a, b] then prove that f(x)∈ R[a, b].

Also,

$$n \xrightarrow{\mu}_{a} \infty \int_{a}^{x} f_{n}(t) dt = \int_{a}^{x} f(t) dt \forall x \in [a, b].$$

6. a) State and prove the Hiene-Borel theorem.8b) Define a K-cell. Prove that every K-cell is compact.8

7. a) Suppose f maps an open set $E \subset I\mathbb{R}^n$ into \mathbb{R}^m , and f is differentiable at a point $x \in E$. Then the partial derivatives $(D_i f_i)(x)$ exist, and

$$f^{1}(x)ej = \sum_{i=1}^{m} (D_{j}f_{i}) (x) (u_{i}), (1 \le j \le n).$$
5

- b) If $T_{\in} L(\mathbb{R}^{n}, \mathbb{R}^{m})$, then $||T|| < \infty$ and T is uniformly continuous mapping of \mathbb{R}^{n} onto \mathbb{R}^{m} .
- c) If $\phi : \chi \to \chi$ is a contraction on a complete metric space X, then prove that ϕ has a unique fixed point.

5

6