

I Semester B.Sc. Examination, November/December 2018 (2014-15 and Onwards) (F + R) (CBCS) Paper – I: CHEMISTRY

Time: 3 Hours Max, Marks: 70

Instructions: 1) The question paper has two Parts. Answer both the Parts.

 Draw diagram and write chemical equations wherever necessary.

PART - A

Answer any eight questions. Each question carries two marks.

 $(8 \times 2 = 16)$

- 1. Find the value of log 25, if log 5 = 0.6990.
- Give the relationship between Van der Waal's constants and critical pressure of a gas. Mention its SI units.
- 3. What is inversion temperature?
- 4. State Stark-Einstein law.
- 5. Define critical solution temperature of a partially miscible liquid mixture.
- 6. Atomic radius decreases across a period. Give reasons.
- 7. Define electron affinity.
- 8. Give any two important chemical properties of Alkali metals.
- 9. What is a dibasic acid? Give an example.
- 10. Classify the following into electrophiles and nucleophiles BF₃, NH₃, CN^Θ, -[⊕]NO₂
- 11. How cycloalkane is synthesised from benzene?
- 12. Mention any two important limitations of Bayer's strain theory.

E (Ctrading adveding PART - B IIIm RA .: E.E. a potromeau

1	Ansı	wer any nine of the following. Each question carries six marks. (9×6=54
13	3. a	Write Maxwell-Boltzmann distribution law of molecular velocities and explain the terms involved.
	b)	Define exact differential. Give an example. (4+2)
14	. a)	Derive an expression for critical volume of a gas from Van der Waal's equation.
	b)	Calculate the rms velocity of methane molecule at 400 K. Given, molar mass = 16×10^{-3} kg mol ⁻¹ , R = 8.314 JK ⁻¹ mol ⁻¹ . (4+2)
15.	. a)	Explain briefly Andrew's experiments on Carbon dioxide.
	b)	Give the principle of liquilacity of air by Linde's process. (4+2
16		State and explain Beer-Lambert's law Mention any two of its applications.
	b)	Give any two examples for (i) Chemical sensors (ii) Photosensitisers. (4+2
17		Mention any four differences between ideal and non ideal solutions.
	b)	Define normality of a solution. Give an example.
18.	a)	Discuss Berkeley-Hartley's method of measurement of osmotic pressure of a solution.
	b)	What is surface tension ? Mention its SI Units. (4+2)
19.	a)	State and explain Nernst distribution law briefly.
	b)	Explain Corey-House synthesis with an example. (3+3)
20.	a)	Discuss variation of ionisation energy (i) across a period (ii) down the group.
	b)	What is diagonal relationship? Give an example. (4+2)
21.	a)	Explain the formation of oxides and carbonates of alkaline earth elements.
	b)	Give any two applications of electronegativity. (4+2)

- 22. a) Calculate the normality of
 - i) KMnO₄ solution, when 25 cm³ of 0.09 N sodium oxalate solution reacts completely with 24.4 cm3 of KMnO4 solution.
 - ii) 4.92 g of Ferrous ammonium sulphate crystals dissolved in water and made up to 250 cm3 solution. (Eq. wt. mass of FAS = 392.14)
 - b) What are indeterminate errors? Give an example.

(4+2)

- 23. a) Explain the stability of carbocations based on inductive effect.
 - b) Explain hyper conjugation with an example.

- 24. a) How alkynes are synthesised by dehydrohalogenation of
 - i) Vicinal dihalides
 - ii) Geminal dihalides.
 - b) What is wurtz reaction? Give an example.

(4+2)

- 25. a) Explain the mechanism of ozonor alkenes.
 - b) Draw any two conformations of n-butane adaptding to Newman projection (4+2)formula.